Mixed-Alkali Effect on Thermal Property and Elastic Behavior in Borosilicate Glasses

Xianmao Xie , Hemin Zhou , Xuefei Ke , Xiaowei Wang , Yadan Wang , Jiayan Zhang , Ang Qiao , Haizheng Tao

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 1017 -1024.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 1017 -1024. DOI: 10.1007/s11595-023-2790-5
Advanced Materials

Mixed-Alkali Effect on Thermal Property and Elastic Behavior in Borosilicate Glasses

Author information +
History +
PDF

Abstract

We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65SiO2·21.09B2O3·1.88Al2O3·(6.3 8− x)Li2xNa2O glasses, where x = 0.00, 1.595, 3.19, 4.785, and 6.38. Except for the expected positive and negative deviations from linearity for the coefficients of thermal expansion, room temperature E and G, we observed a new mixed alkali effect on the response of elastic moduli to temperature. Fourier transform infrared spectra were obtained to elucidate the possible structural origin of the mixed alkali effects. This work provides a valuable insight into the structural and mechanical properties of mixed-alkali borosilicate glasses.

Keywords

mixed-alkali effect / borosilicate glass / elastic response to temperature / structural origin

Cite this article

Download citation ▾
Xianmao Xie, Hemin Zhou, Xuefei Ke, Xiaowei Wang, Yadan Wang, Jiayan Zhang, Ang Qiao, Haizheng Tao. Mixed-Alkali Effect on Thermal Property and Elastic Behavior in Borosilicate Glasses. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(5): 1017-1024 DOI:10.1007/s11595-023-2790-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weber R. Uber Den Einfluß Der Zusammensetzung Des Glases Auf Die Depressions- Erscheinungen Der Thermometer[J]. Ber. Dtsch. Chem. Ges., 1883, 21(1): 1086-1096.

[2]

Mohajerani A, Zwanziger J W. Mixed Alkali Effect on Vickers Hardness and Cracking[J]. J. Non-Cryst. Solids, 2012, 358(12–13): 1474-1479.

[3]

Rao N S, Bale S, Purnima M, et al. Mixed Alkali Effect in Boroarsenate Glasses[J]. J. Phys. Chem. Solids, 2007, 68(7): 1354-1358.

[4]

Novy M, Avila-Paredes H, Kim S, et al. Communication: Dimensionality of the Ionic Conduction Pathways in Glass and the Mixed-Alkali Effect[J]. J. Chem. Phys., 2015, 143(24): 241 104

[5]

Uchino T, Yoko T. Sodium and Lithium Environments in Single- and Mixed-Alkali Silicate Glasses. An ab Initio Molecular Orbital Study[J]. J. Phys. Chem. B, 1999, 103(11): 1854-1858.

[6]

Dyre J C, Maass P, Roling B, et al. Fundamental Questions Relating to Ion Conduction in Disordered Solids[J]. Rep. Prog. Phys., 2009, 72(4): 046 501

[7]

Maass P, Peibst R. Ion Diffusion and Mechanical Losses in Mixed Alkali Glasses[J]. J. Non-Cryst. Solids, 2006, 352(42–49): 5178-5187.

[8]

Greaves G N, Ngai K L. Reconciling Ionic-Transport Properties with Atomic Structure in Oxide Glasses[J]. Phys. Rev. B, 1995, 52(9): 6 358

[9]

Voigt U, Lammert H, Eckert H, et al. Cation Clustering in Lithium Silicate Glasses: Quantitative Description by Solid-State NMR and Molecular Dynamics Simulations[J]. Phys. Rev. B, 2005, 72(6): 064 207

[10]

Kamitsos E, Yiannopoulos Y, Jain H, et al. Far-Infrared Spectra of Alkali Germanate Glasses and Correlation with Electrical Conductivi-y[J]. Phys. Rev. B, 1996, 54(14): 9 775

[11]

Greaves G. EXAFS and the Structure of Glass[J]. J. Non-Cryst. Solids, 1985, 71(1–3): 203-217.

[12]

Park B, Cormack A. Molecular Dynamics Simulations of Structural Changes in Mixed Alkali (Li-K) Silicate Glasses[J]. J. Non-Cryst. Solids, 1999, 255(1): 112-121.

[13]

Onodera Y, Takimoto Y, Hijiya H, et al. Origin of the Mixed Alkali Effect in Silicate Glass[J]. NPG Asia Mater., 2019, 11(1): 75

[14]

Wilkinson C J, Potter A R, Welch R S, et al. Topological Origins of the Mixed Alkali Effect in Glass[J]. J. Phys. Chem. B, 2019, 123(34): 7482-7489.

[15]

Lodesani F, Menziani M C, Hijiya H, et al. Structural Origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and Its Assessment[J]. Sci. Rep., 2020, 10(1): 2 906

[16]

Ryou S Y, Lee C S, Cho I S, et al. Measurement of Dynamic Elastic Modulus and Poisson’s Ratio of Chemically Strengthened Glass[J]. Materials, 2020, 13(24): 5 644

[17]

Shan Z, Zhang Y, Liu S, et al. Mixed-Alkali Effect on Hardness and Indentation-Loading Behavior of a Borate Glass System[J]. J. Non-Cryst. Solids, 2020, 548: 120 314.

[18]

Chinnamat W, Laopaiboon R, Laopaiboon J, et al. Influence of Ionic Radius Modifying Oxides on the Elastic Properties of Glasses Using Ultrasonic Techniques and FTIR Spectroscopy[J]. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2017, 58(5): 207-216.

[19]

Sun Y, Zhang Z. Structural Roles of Boron and Silicon in the CaO-SiO2-B2O3 Glasses Using FTIR, Raman, and NMR Spectroscopy[J]. Metall. Mater. Trans. B, 2015, 46(4): 1549-1554.

[20]

Gautam C, Yadav A K, Singh A K. A Review on Infrared Spectroscopy of Borate Glasses with Effects of Different Additives[J]. ISRN Ceram., 2012: 1–17

[21]

Shao G, Wu X, Kong Y, et al. Thermal Shock Behavior and Infrared Radiation Property of Integrative Insulations Consisting of MoSi2/Bo-rosilicate Glass Coating and Fibrous ZrO2 Ceramic Substrate[J]. Surf. Coat. Technol., 2015, 270: 154-163.

[22]

Winterstein-Beckmann A, Möncke D, Palles D, et al. A Raman-Spectroscopic Study of Indentation-Induced Structural Changes in Technical Alkali-Borosilicate Glasses with Varying Silicate Network Connectivity[J]. J. Non-Cryst. Solids, 2014, 405: 196-206.

[23]

Sellappan P, Rouxel T, Celarie F, et al. Composition Dependence of Indentation Deformation and Indentation Cracking in Glass[J]. Acta Mater., 2013, 61(16): 5949-5965.

[24]

Frederiksen K F, Januchta K, Mascaraque N, et al. Structural Compromise between High Hardness and Crack Resistance in Aluminoborate Glasses[J]. J. Phys. Chem. B, 2018, 122(23): 6287-6295.

[25]

Ostergaard M B, Hansen S R, Januchta K, et al. Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glasses[J]. Materials, 2019, 12(15): 2 439

[26]

Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Crystallogr., Sect. A, 1976, 32(5): 751-767.

[27]

Zheng Q J, Youngman R E, Hogue C L, et al. Structure of Boroaluminosilicate Glasses: Impact of [Al2O3]/[SiO2] Ratio on the Structural Role of Sodium[J]. Phys. Rev. B, 2012, 86(5): 054 203

[28]

Januchta K, Bauchy M, Youngman R E, et al. Modifier Field Strength Effects on Densification Behavior and Mechanical Properties of Alkali Aluminoborate Glasses[J]. Phys. Rev. Mater., 2017, 1(6): 063 603

[29]

Januchta K, To T, Bødker M S, et al. Elasticity, Hardness, and Fracture Toughness of Sodium Aluminoborosilicate Glasses[J]. J. Am. Ceram. Soc., 2019, 102(8): 4520-4537.

[30]

Rouxel T. Elastic Properties and Short-to Medium-Range Order in Glasses[J]. J. Am. Ceram. Soc., 2007, 90(10): 3019-3039.

[31]

Hao J, Zan Q, Ai D, et al. Theoretical Calculations of the Thermal Expansion Coefficient of Glass-Ceramic Sealing Materials in Solid Oxide Electrolysis Cell[J]. J. Non-Cryst. Solids, 2013, 361: 86-92.

[32]

Fry A L, George C, Slagle I, et al. Field Strength Effect on Structure, Hardness, and Crack Resistance in Single Modifier Aluminoborosilicate Glasses[J]. J. Am. Ceram. Soc., 2022, 106(2): 951-966.

[33]

He Q F, Wang J G, Chen H A, et al. A Highly Distorted Ultraelastic Chemically Complex Elinvar Alloy[J]. Nature, 2022, 602(7896): 251-257.

[34]

Liu C, Ji Y, Tang J, et al. A Lightweight Strain Glass Alloy Showing Nearly Temperature-Independent Low Modulus and High Strength[J]. Nat. Mater., 2022, 21(9): 1003-1007.

[35]

Jaccani S P, Huang L. Understanding Sodium Borate Glasses and Melts from Their Elastic Response to Temperature[J]. Int. J. Appl. Glass Sci., 2016, 7(4): 452-463.

[36]

Jaccani S P, Sundararaman S, Huang L. Understanding the Structural Origin of Intermediate Glasses[J]. J. Am. Ceram. Soc., 2018, 102(3): 1137-1149.

[37]

Huang L, Kieffer J. Thermomechanical Anomalies and Polyamorphism in B2O3 Glass: A Molecular Dynamics Simulation Study[J]. Phys. Rev. B, 2006, 74(22): 224 107

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/