Theoretical Predition of Two-dimensional SiGeP2 by the Global Optimization Method

Xiao Xue , Jiahui Yu , Dawei Zhou , Chunying Pu

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 1010 -1016.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 1010 -1016. DOI: 10.1007/s11595-023-2789-y
Advanced Materials

Theoretical Predition of Two-dimensional SiGeP2 by the Global Optimization Method

Author information +
History +
PDF

Abstract

The well-developed particle-swarm optimization method together with density functional theory calculations were employed to search lowest-energy geometric structures of two-dimensional (2D) SiGeP2. Two newly found structures (P3m1 and Pmm2) are predicted. The unbiased global search reveals that the two lowest-energy structures are honeycomb lattices with robust dynamical stabilities. A more accurate Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is used to estimate the band structures of SiGeP2, which indicates that both the structures are semiconductors with indirect band-gap energies 1.80 eV for P3m1 and 1.93 eV for Pmm2, respectively. Using the deformation potential theory, the P3m1-SiGeP2 is predicted to have high electron mobilities (6.4×104 along zigzag direction and 2.9×103 cm2·V−1·s−1 along armchair direction, respectively) and hole electron mobilities (1.0×103 along zigzag direction and 2.5×103 cm2·V−1·s−1 along armchair direction, respectively), which can be comparable with that of phosphorene and show anisotropic character in-plane. In addition, to estimate the elastic limit of SiGeP2, we also calculated the surface tension of SiGeP2 as a function of tensile strain. Our results show that the 2D SiGeP2 may be good candidaticates for applications in nanoelectronic devices.

Keywords

two dimensional SiGeP2 / the first-principles / carrier mobility

Cite this article

Download citation ▾
Xiao Xue, Jiahui Yu, Dawei Zhou, Chunying Pu. Theoretical Predition of Two-dimensional SiGeP2 by the Global Optimization Method. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(5): 1010-1016 DOI:10.1007/s11595-023-2789-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cahangirov S, Topsakal M, Aktürk E, et al. Two and One-dimensional Honeycomb Structures of Silicon and Germanium[J]. Phys. Rev. Lett., 2009, 102(23): 236 804

[2]

Yang K, Cahangirov S, Cantarero A, et al. Thermoelectric Properties of Atomically Thin Silicene and Germanene Nanostructures[J]. Phys. Rev. B, 2014, 89(12): 125 403

[3]

Feng B, Ding Z, Meng S, et al. Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)[J]. Nano. Lett., 2012, 12(7): 3507-3511.

[4]

Jin C, Lin F, Suenaga K, et al. Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments[J]. Phys. Rev. Lett, 2009, 102(19): 195 505

[5]

Morscher M, Corso M, Greber T, et al. Formation of Single Layer h-BN on Pd(111)[J]. Susc., 2006, 600(16): 3280-3284.

[6]

He T Y, Li Y J, Zhou Z F, et al. Synthesis of Large-area Uniform MoS2 Films by Substrate-moving Atmospheric Pressure Chemical Vapor Deposition: from Monolayer to Multilayer[J]. 2D Mat., 2019, 6(2): 025 030

[7]

Zhang K, Zheng Y, Lan Y, et al. Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch[J]. J.Wuhan.Unvi.Technol. -Mat Sci. Ed., 2021, 36: 465471.

[8]

Lu W, Nan H, Hong J, et al. Plasma-Assisted Fabrication of Monolayer Phosphorene and Its Raman Characterization[J]. Nano. Res., 2014, 7: 853-859.

[9]

Hwang E, Das Sarma S. Single-Particle Relaxation Time Versus Transport Scattering Time in a Two-Dimensional Graphene Layer[J]. Phys. Rev. B, 2008, 77: 195 412.

[10]

Xia F, Farmer D B, Lin Y M, et al. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature[J]. Nano Lett., 2010, 10: 715-718.

[11]

Liao L, Lin Y C, Bao M, et al. High-Speed Graphene-Transistors with a Self-Aligned Nanowire Gate[J]. Nature, 2010, 467: 305-308.

[12]

Kedzierski J, Hsu P. Epitaxial Graphene Transistors on SIC Substrates[J]. Ieee. Trans.Elec. Dev., 2008, 55: 2078-2085.

[13]

Sun Z, Chang H. Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology[J]. Acs Nan., 2014, 8: 4133-4156.

[14]

Vogt P, Padova P D, Quaresima C, et al. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon[J]. Phys. Rev. Lett., 2012, 108: 155 501.

[15]

Moras P, Mentes TO, Polina M, et al. Coexistence of Multiple Silicene Phases in Silicon Grown on Ag(111) [J]. J. Phys., 2014, 26: 24 727 950.

[16]

Meng L, Wang Y, Zhang L, et al. Buckled Silicene Formation on Ir(111)[J]. Nano Lett., 2013, 13: 685-690.

[17]

Dávila M, Xian L, Cahangirov S, et al. Germanene: A Novel Two-dimensional Germanium Allotrope Akin to Graphene and Silicene[J]. New J Phys., 2014, 16: 095 002.

[18]

Yasaei P, Kumar B, Foroozan T, et al. High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation[J]. Adv. Mater., 2015, 27: 1887-1892.

[19]

Brent J R, Savjani N, Lewis E A, et al. Production of Few-Layer Phosphorene by Liquid Exfoliation of Black Phosphorus[J]. Chem. Commun., 2014, 50: 13338-13341.

[20]

Guan J, Liu D, Zhu Z, et al. Two-dimensional Phosphorus Carbide Competition between sp2 and sp3 Bonding[J]. Nano Lett., 2016, 16: 3247-3252.

[21]

Yu T, Zhao Z, Sun Y, et al. Two-dimensional PC6 with Direct Band Gap and Anisotropic Carrier Mobility[J]. J. Am. Chem. Soc., 2019, 141: 1599-1605.

[22]

Jing Y, Ma Y, Li Y, et al. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement[J]. Nano Lett., 2017, 17: 1833-1838.

[23]

Huang B, Zhuang H L, Yoon M, et al. Highly Stable Two-dimensional Silicon Phosphides: Different Stoichiometries and Exotic Electronic Properties[J]. Phys Rev B, 2015, 91: 121 401.

[24]

Li L, Wang W, Gong P, et al. 2D GeP: An Unexploited Low-Symmetry Semiconductor with Strong In-Plane Anisotropy[J]. Adv. Mater., 2018, 30: 1 706 771.

[25]

Barreteau C, Michon B, Besnard C, et al. High-pressure Melt Growth and Transport Properties of SiP, SiAs, GeP, and GeAs 2D Layered Semiconductors[J]. J. Cryst. Growth, 2016, 443: 75-80.

[26]

Gao B, Gao P, Lu S, et al. Interface Structure Prediction via CALYPSO Method[J]. Sci. Bull., 2019, 64: 301-309.

[27]

Wang Y, Lv J, Zhu L, et al. Crystal Structure Prediction Via Particle-swarm Optimization[J]. Bull. M.SCI, 2010, 82: 094 116.

[28]

Blochl P, Forst C, Schimpl J. Projector Augmented Wave Method: Ab Initio Molecular Dynamics with Full Wave Functions[J]. Phys. Rev. B, 2003, 26: 33-41.

[29]

Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Phys. Rev. B, 1999, 59: 1758-1775.

[30]

Kresse G. Ab Initio Molecular Dynamics for Liquid Metals[J]. J. N. Sol, 1995, 193: 222-229.

[31]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868.

[32]

Heyd J, Scuseria G E, Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential[J]. J. Chem. Phys., 2003, 118: 8207-8215.

[33]

Togo A, Oba F, Tanaka I. First-principles Calculations of the Ferroelastic Transition between Rutile-type and CaCl2-type SiO2 at High Pressures[J]. Phys. Rev. B, 2008, 78: 134 106.

[34]

Yang L M, Bačić V, Popov I A, et al. Two-Dimensional Cu2Si Monolayer with Planar Hexacoordinate Copper and Silicon Bonding[J]. J. Am. Chem. Soc., 2015, 137: 2757-2762.

[35]

Wang Y, Li F, Li Y, et al. Semi-metallic Be5C2 Monolayer Global Minimum with Quasi Planar Pentacoordinate Carbons and Negative Poissons Ratio[J]. Nat. Commun., 2016, 7: 11 488.

[36]

Mouhat F, Coudert F X. Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems[J]. Phys. Rev. B, 2014, 90: 224 104.

[37]

Wang L, Kutana A, Zou X, et al. Electro-mechanical Anisotropy of Phosphorene[J]. Nan., 2015, 7: 9746-9751.

[38]

Arushanov E, Ivanenbo L, Lange H, et al. Hole Mobility in Cr-doped p-type Beta-FeSi2 Single Crystals[J]. Physica Status Solidi B. Bascic Research, 1998, 210: 187-194.

[39]

Xi J, Long M, Tang L, et al. First-principles Prediction of Charge Mobility in Carbon and Organic Nanomaterials[J]. Nano, 2012, 4: 4348-4369.

[40]

Qiao J S, Kong X H, Hu Z X, et al. High-mobility Transport Anisotropy and Linear Dichroism in Few-layer Black Phosphorus[J]. Nat. Com., 2014, 5: 4 475.

[41]

Ghosh B, Puri S, Agarwal A. SnP3: A Previously Unexplored Two-Dimensional Material[J]. J. Phys. Chem. C, 2018, 122: 18185-18191.

[42]

Sun S, Meng F, Wang H, et al. Novel Two- Dimensional Semiconductor SnP3: High Stability, Tunable Bandgaps and High Carrier Mobility Explored Using First-Principles Calculations[J]. J. M. Chem. A, 2018, 6: 11890-11897.

[43]

Lu N, Zhuo Z, Guo H, et al. CaP3: A New Two-Dimensional Functional Material with Desirable Band Gap and Ultrahigh Carrier Mobility[J]. J. Phys. Chem. Lett., 2018, 9: 1728-1733.

[44]

Zhang Z, Yang Y, Penev E S, et al. Elasticity, Flexibility, and Ideal Strength of Borophenes[J]. Adv. F. Mater., 2017, 27: 1 605 059.

[45]

Li T. Ideal Strength and Phonon Instability in Single-Layer MoS2[J]. Phys. Rev. B, 2012, 85: 235 407.

[46]

Wu L, Zhou Z, Zhang X, et al. Influence of Heat Treatment on Plasma Sprayed FeCrMoCBY Amorphous Coatings[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2021, 36(5): 761-765.

[47]

Wei Q, Peng X. Superior Mechanical Flexibility of Phosphorene and Few-layer Black Phosphorus[J]. Appl. Phys. Lett., 2014, 104: 251 915.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/