Low Temperature Heat Capacity of Zn Substituted Cobalt Ferrite Nanosphere: The Relation between Magnetic Properties and Microstructure

Meng Yuan , Xiaojie Gu , Jie Fu , Shaoxu Wang , Quan Shi , Zhicheng Tan , Fen Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 984 -995.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 984 -995. DOI: 10.1007/s11595-023-2786-1
Advanced Materials

Low Temperature Heat Capacity of Zn Substituted Cobalt Ferrite Nanosphere: The Relation between Magnetic Properties and Microstructure

Author information +
History +
PDF

Abstract

Co(1−x)Zn xFe2O4 nanospheres (x = 0, 0.5, 0.8) with a unidirectional cubic spinel structure were prepared by a solvothermal method. By using a range of theoretical and empirical models, the experimental heat capacity values were fitted as a function of temperature over a suitable temperature range to explain the possible relationship between the magnetic properties and microstructure of the nanospheres. As a result, at a low temperature (T < 10 K), the parameter B fsw decreases with increasing Zn concentration, implying that the exchange interaction between A and B sites decreases. At a relatively high temperature (T > 50 K), the Debye temperature decreases with increasing Zn concentration, which is due to the weakening of the interatomic bonding force after the addition of non-magnetic materials to the CoFe2O4 spinel ferrite.

Keywords

Co-Zn spinal ferrite nanospheres / magnetic properties / heat capacity / thermodynamic functions / PPMS

Cite this article

Download citation ▾
Meng Yuan, Xiaojie Gu, Jie Fu, Shaoxu Wang, Quan Shi, Zhicheng Tan, Fen Xu. Low Temperature Heat Capacity of Zn Substituted Cobalt Ferrite Nanosphere: The Relation between Magnetic Properties and Microstructure. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(5): 984-995 DOI:10.1007/s11595-023-2786-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Muhammad A R, Athar J, Muhammad N R, et al. Understanding the Structural, Electronic, Magnetic and Optical Properties of Spinel MFe2O4 (M = Mn, Co, Ni) Ferrites[J]. Ceram. Int., 2020, 46(4): 4976-4983.

[2]

Arévalo-Cid P, Isasi J, Alcolea M, et al. Comparative Structural, Morphological and Magnetic Study of MFe2O4 Nanopowders Prepared by Different Synthesis Routes[J]. Materials Research Bulletin, 2020, 123: 110 726.

[3]

Patil V G, Shirsath S E, More S D, et al. Effect of Zinc Substitution on Structural and Elastic Properties of Cobalt Ferrite[J]. J. Alloys Compd, 2009, 488(1): 199-203.

[4]

Fan C C, Zhai X W, Chen L, et al. Synthesis and Electrocatalytic Mechanism of Ultrafine MFe2O4 (M: Co, Ni, and Zn) Nanocrystallites: M/Fe Synergistic Effects on the Electrochemical Detection of Cu(II) and Hydrogen Evolution Reaction Performances[J]. J. Mater. Chem. A, 2021, 9(39): 22277-22290.

[5]

Li R, Cen W, Yuan Y, et al. First Principle Calculation of Electromagnetic Mechanism for Fe2Si Bulk Material[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2019, 34(1): 64-68.

[6]

Yogendra K, Alfa S, Parasharam M S. Impact of Different Morphologies of CoFe2O4 Nanoparticles for Tuning of Structural, Optical and Magnetic Properties[J]. Journal of Alloys and Compounds, 2019, 778: 398-409.

[7]

Xie X B, Wang B L, Wang Y K, et al. Spinel Structured MFe2O4(M = Fe, Co, Ni, Mn, Zn) and Their Composites for Microwave Absorption: A Review[J]. Chemical Engineering Journal, 2022, 428: 131 160.

[8]

Kasenov B K, Sagintaeva Z I, Kasenova S B, et al. Calorimetric Investigation of Heat Capacity of the ErMFe2O5.5(M = Mg, Ca, Sr, Ba) Ferrites in the Temperature Range of 298.15-673 K and Calculation of Their Thermodynamic Functions[J]. Published in Teplofizika Vysokikh Temperatur, 2015, 53(3): 358-362.

[9]

Huang Z, Gao P, Zheng H, et al. Magnetic Enrichment Behavior of Monodispersed MFe2O4 Nanoferrites (M= Mg, Ca, Ni, Co, and Cu)[J]. Ceram. Int, 2019, 45(13): 15980-15989.

[10]

Qin H, He Y Z, Xu P, et al. Spinel Ferrites (MFe2O4): Synthesis, Improvement and Catalytic Application in Environment and Energy Field[J]. Advances in Colloid and Interface Science, 2021, 294: 102 486.

[11]

Thomas D, Erika A L, Oana C. Formation, Structure and Magnetic Properties of MFe2O4@SiO2(M = Co, Mn, Zn, Ni, Cu) Nanocomposites[J]. Materials, 2021, 14(5): 1 139

[12]

Tijerina-Rosa A, Greneche J M, Fuentes A F, et al. Partial Substitution of Cobalt by Rare-Earths (Gd or Sm) in Cobalt Ferrite: Effect on its Microstructure and Magnetic Properties[J]. Ceram. Int., 2019, 45(17): 22920-22929.

[13]

Sagayaraj R, Aravazhi S, Chandrasekaran G. Effect of Zinc Content on Structural, Functional, Morphological, Resonance, Thermal and Magnetic Properties of Co1−xZnxFe2O4/PVP Nanocomposites[J]. J. Inorg. Organomet. Polym. Mater., 2019, 29: 2252-2261.

[14]

King E G. Heat Capacities at Low Temperature and Entropies of Five Spinel Minerals[J]. The Journal of Physical chemistry, 1956, 60(4): 410-412.

[15]

Schliesser J M, Huang B, Sahu S K, et al. Experimental Heat Capacities, Excess entropies, and Magnetic Properties of Bulk and Nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 Spinel Solid Solutions[J]. J. Solid State Chem., 2018, 259: 79-90.

[16]

Alzoubi G M, Alsmadi A M, Alna’washi G A, et al. Coexistence of Superparamagnetism and Spin-glass Like Behavior in Zinc-Substituted Cobalt Ferrite Nanoparticles[J]. Appl. Phys. A, 2020, 126: 1-11.

[17]

Zhu J, Tong X, Niu S, et al. Effects of Magnetization on Thermoelectric Transport Properties of CoSb3 Material[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2021, 36(3): 353-357.

[18]

Martin A, Elvira F, Claudia I, et al. Role of Zn2+ Substitution on the Magnetic, Hyperthermic, and Relaxometric Properties of Cobalt Ferrite Nanoparticles[J]. J. Phys. Chem. C, 2019, 123(10): 6148-6157.

[19]

Muscas G, Jovanovi S, Vukomanovic M, et al. Zn-doped Cobalt Ferrite: Tuning the Interactions by Chemical Composition[J]. J. Alloys Compd., 2019, 796: 203-209.

[20]

Kumar D R, Ahmad S I, Lincoln C A, et al. Structural, Optical, Room-Temperature and Low-Temperature Magnetic Properties of Mg-Zn Nanoferrite Ceramics[J]. J. Asian Ceram. Soc., 2019, 7(1): 53-68.

[21]

Ateia E E, Abdelmaksoud M K, Arman M M, et al. Comparative Study on the Physical Properties of Rare-Earth-Substituted Nano-Sized CoFe2O4[J]. Appl. Phys. A, 2020, 126(2): 91

[22]

Dudnikov V A, Orlov Y S, Bushinsky M A, et al. Structural, Magnetic, Electronic, and Dilatation Properties of the Ordered Solid Solutions Ln0.2Sr0.8CoO3−δ (Ln = Sm, Gd, Dy) with the Same Oxygen Nonstoichiometry Index δ[J]. J. Alloys Compd., 2020, 830: 154 629.

[23]

Alberto P, Susana Y, Yolanda P, et al. Cubic Anisotropic Co- and Zn-Substituted Ferrite Nanoparticles as Multimodal Magnetic Agents[J]. ACS Appl. Mater Interfaces, 2020, 12(8): 9017-9031.

[24]

Almessiere M A, Slimani Y, Trukhanov A V, et al. Strong Correlation Between Dy3+ Concentration, Structure, Magnetic and Microwave Properties of the [Ni0.5Co0.5](DyxFe2−x)O4 Nanosized Ferrites[J]. J. Ind. Eng. Chem., 2020, 90: 251-259.

[25]

Yan M, Li C, Zou Y, et al. Synthesis and Characterization of Magnetic MAX Phase (Cr2−xMnx)GaC[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35: 363-367.

[26]

Raut A V, Barkule R S, Shengule D R, et al. Synthesis, Structural Investigation and Magnetic Properties of Zn2+ Substituted Cobalt Ferrite Nanoparticles Prepared by Sol-Gel Auto-Combustion Technique[J]. J. Magn. Magn. Mater., 2014, 350: 87-92.

[27]

Khozima H, Qassem I M, Mahdi L, et al. Structural and Magnetic Studies of Ga-doped Yttrium Iron Garnet[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2021, 36: 13-21.

[28]

Thorat L M, Patil J Y, Nadargi D Y, et al. Co2+ Substituted Mg-Cu-Zn Ferrite: Evaluation of Structural, Magnetic, and Electromagnetic Properties[J]. J. Adv. Ceram., 2018, 7: 207-217.

[29]

Abdel Maksoud M I A, El-Ghandour A, El-Sayyad G S, et al. Unveiling the Effect of Zn2+ Substitution in Enrichment of Structural, Magnetic, and Dielectric Properties of Cobalt Ferrite[J]. J. Inorg. Organomet. Polym. Mater., 2020, 30: 3709-3721.

[30]

Nocikov V V. Debye-Einstein Model and Anomalies of Heat Capacity Temperature Dependences of Solid Solutions at Low Temperatures[J]. J. Therm. Anal. Calorim., 2019, 138(1): 265-272.

[31]

Saroj L M. Heat Capacity and Magnetocaloric Effect in CoS1.84Se0.16[J]. J. Magn. Magn. Mater., 2019, 474: 619-623.

[32]

Feng T, Li L, Shi Q, et al. Heat Capacity and Thermodynamic Functions of TiO2(B) Nanowires[J]. J. Chem. Thermodyn, 2018, 119: 127-134.

[33]

Suman K, Murli K M, Manoranjan K, et al. Magnetic Properties and Hyperthermia Action of Cobalt Zinc Ferrite Fibers[J]. J. Sol-Gel Sci. Technol., 2022, 101(3): 546-561.

[34]

Sadovnikov S I, Gusev A I. Thermal Expansion, Heat Capacity and Phase Transformations in Nanocrystalline and Coarse-Crystalline Silver Sulfide at 290–970 K[J]. J. Therm. Anal. Calorim., 2018, 131: 1155-1164.

[35]

Maxim I L, Evgeny V S, Charles A G, et al. A Calorimetric and Thermodynamic Investigation of Cs6[(UO2)2(MoO4)3(MoO5)] and Calculated Phase Behaviour in the System (Cs2MoO4 + UO3 + H2O)[J]. J. Chem. Thermodyn., 2021, 153: 106 274.

[36]

Dai R, Zhang S H, Yin N, et al. Low-Temperature Heat Capacity and Standard Thermodynamic Functions of β-D-(-)-Arabinose (C5H10O5)[J]. J. Chem. Thermodyn, 2016, 92: 60-65.

[37]

Chen S P, Shi Q, Xia Z Q, et al. Magneto-Structural Correlation and Low Temperature Heat Capacity of a Mn(III) Quadridentate Schiffbase Coordination Compound[J]. J. Chem. Thermodyn, 2014, 74: 247-254.

[38]

Drebushchak V A. Model-Free Temperature Scaling for Heat Capacity[J]. J. Therm. Anal. Calorim., 2017, 130: 5-13.

[39]

Jurčišinová E, Jurčišin M. Influence of Metamagnetic Phase Transitions on Thermodynamics of Frustrated Systems with Octahedral Structure[J]. J. Magn. Magn. Mater., 2021, 524: 167 658.

[40]

Lohaus S H, Johnson M B, Ahnn P F, et al. Thermodynamic Stability and Contributions to the Gibbs Free Energy of Nanocrystalline Ni3Fe[J]. Phys. Rev. Materials, 2020, 4(8): 086002

[41]

Chen S, Xia J, Dai J. Effects of Heating Processing on Microstructure and Magnetic Properties of Mn-Zn Ferrites Prepared via Chemical Co-Precipitation[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(4): 684-688.

[42]

Anna M S, Tatiana D M, Alexey V M, et al. Isobaric Heat Capacity and Standard Thermodynamic Properties of Cationordered Layered Perovskite-Like Oxides NaLnTiO4 and A2Ln2Ti3O10 (A = H, Na, K; Ln = La, Nd, Gd)[J]. Thermochim. Acta., 2020, 686: 178 533.

[43]

Wang G, Li Y, Gao Y, et al. Thermodynamic Study on Self-Propagating High Temperature Synthesis of TiB2/Fe Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(4): 769-773.

[44]

Prayoonsak P, Prutthipong T, Burapat I, et al. Structural, Thermodynamic, Electronic, and Magnetic Properties of Superconducting FeSe-CsCl Type: Ab Initio Searching Technique With Van Der Waals Corrections[J]. Mater. Chem. Phys., 2021, 267: 124 708.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/