Structural Characterization of Carbon-implanted GaSb

Guiying Shen , Youwen Zhao , Jianjun He

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 969 -973.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (5) : 969 -973. DOI: 10.1007/s11595-023-2784-3
Advanced Materials

Structural Characterization of Carbon-implanted GaSb

Author information +
History +
PDF

Abstract

Ion implantation induced damage in GaSb and its removal by rapid thermal annealing (RTA) have been investigated by Raman spectroscopy. The evolution of the Raman modes as a function of implantation fluence, annealing temperature and time has been analyzed. Results indicate that a lattice quality that is close to as-grown GaSb has been obtained by annealing the implanted samples at 500 °C for 45 s. However, consequent surface analyses by scanning electron microscope (SEM) and atomic force microscope (AFM) show that a heavily perturbed layer contains voids due to the outdiffusion of Sb atoms on the surface remains. Mechanism of the damage recovery and the structure of the implanted layer are discussed based on the experimental results.

Keywords

ion implantation / Raman spectroscopy / GaSb / RTA

Cite this article

Download citation ▾
Guiying Shen, Youwen Zhao, Jianjun He. Structural Characterization of Carbon-implanted GaSb. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(5): 969-973 DOI:10.1007/s11595-023-2784-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett B R, Magno R, Boos J B, et al. Antimonide-Based Compound Semiconductors for Electronic Devices: A Review[J]. Solid-State Electronics, 2005, 49(12): 1875-1895.

[2]

Dutta P S, Bhat H L, Kumar V. The Physics and Technology of Gallium Antimonide-An Emerging Optoelectronic Material[J]. Journal of Applied Physics, 1997, 81(9): 5821-5870.

[3]

Hu W G, Wang Z, Su B F, et al. Gallium Antisite Defect and Residual Acceptors in Undoped GaSb[J]. Physics Letters A, 2004, 332(3–4): 286-290.

[4]

Cunningham B T, Haase M A, McCollum M J, et al. Heavy Carbon Doping of Metalorganic Chemical Vapor Deposition Grown GaAs Using Carbon Tetrachloride[J]. Applied Physics Letter, 1989, 54(19): 1905-1907.

[5]

Baldereschi A, Lipari N O. Cubic Contributions to the Spherical Model of Shallow Acceptor States[J]. Physical Review B, 1974, 9(4): 1 525

[6]

Wiersma R, Stotz J A H, Pitts O J, et al. P-Type Carbon Doping of GaSb[J]. Journal of Electronic Materials, 2001, 30: 1429-1432.

[7]

Bett A W, Sulima O V. GaSb Photovoltaic Cells for Applications in TPV Generators[J]. Semiconductors Science and Technology, 2003, 18(5): S184

[8]

Su Y K, Gan K J, Hwang J S, et al. Raman Spectra of Si-Implanted GaSb[J]. Journal of Applied Physics, 1990, 68(11): 5584-5587.

[9]

Rao M V, Berry A K, Do T Q, et al. S and Si Ion Implantation in GaSb Grown on GaAs[J]. Journal of Applied Physics, 1999, 86(11): 6068-6071.

[10]

Callec R, Poudoulec A, Salvi M, et al. Ion Implantation Damage and Annealing in GaSb[J]. Nuclear Instruments and Methods in Physics Research, 1993, 80: 532-537.

[11]

Herrera D J, Lester L F. Electrical and Material Characterization of Sulfur-Implanted GaSb[J]. Journal of Vacuum Science & Technology B, 2019, 37(3): 031 214

[12]

Rahimi N, Aragon A A, Shima D M, et al. Characterization of Surface Defects on Be-Implanted GaSb[J]. Journal of Vacuum Science & Technology B, 2014, 32(4): 04E109-04E109-6.

[13]

Milnes A G, Li X L, Polyakov A Y, et al. Ion Implantation Effects in GaSb[J]. Materials Science and Engineering B, 1994, 27(2–3): 129-136.

[14]

Pearton S J, Von Neida A R, Brown J M, et al. Ion Implantation Damage and Annealing in InAs, GaSb, and GaP[J]. Journal of Applied Physics, 1988, 64(2): 629-636.

[15]

Vargas-Sanabria R, Rosendo E, Martínez J, et al. Study of Te Dinto GaSb by Photoluminescence and HRXRD[J]. Physica Status Solidi (c), 2007, 4(4): 1406-1410.

[16]

Ziegler J F, Ziegler M D, Biersack J P. SRIM - The Stopping and Range of Ions in Matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11–12): 1818-1823.

[17]

Rao C S R, Sundaram S, Schmidt R L, et al. Study of Ion-Implantation Damage in GaAs: Be and InP: Be Using Raman Scattering[J]. Journal of Applied Physics, 1983, 54(4): 1808-1815.

[18]

Maslar J E, Hurst W S, Wang C A. Raman Spectroscopic Determination of Hole Concentration in P-Type GaSb[J]. Journal of Applied Physics, 2008, 103(1): 013502-013502-11.

[19]

Paramanik D, Varma S. Raman Scattering Characterization and Electron Phonon Coupling Strength for MeV Implanted InP(111)[J]. Journal of Applied Physics, 2007, 101(2): 023 528

[20]

Zhou X, Guo W, Perez-Bergquist A G, et al. Optical Properties of GaSb Nanofibers[J]. Nanoscale Res Lett, 2011, 6: 1-6.

[21]

Cardona M. Light Scattering in Solids II[M], 1982 New York: Springer.

[22]

Dutta P S, Bhat H L, Kumar V. The Physics and Technology of Gallium Antimonide: An Emerging Optoelectronic Material[J]. Applied Physics Reviews, 1997, 81(9): 5821-5870.

[23]

Mathews S, Schuler-Sandy T, Kim J S, et al. In-Situ Flashes of Gallium Technique for Oxide-Free Epiready GaSb (100) Surface[J]. Journal of Vacuum Science & Technology B (Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena), 2017, 35(2): 02B 114

[24]

Hwang E, Eaton C, Mujumdar S, et al. Processing and Characterization of GaSb/High-k Dielectric Interfaces[J]. The Electrochemical Society, 2011, 41(5): 157

[25]

Liu B H Z Y, Kuech T F. Chemical and Structural Characterization of GaSb (100) Surfaces Treated by HCl-Based Solutions and Annealed in Vacuum[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing Measurement, and Phenomena, 2003, 21(1): 71-77.

[26]

Aspnes D E, Studna A A. Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B, 1983, 27(2): 985

[27]

Mizokawa Y, Komoda O, Iwasaki H, et al. XPS Study on Oxide/GaSb Interfacial Chemical Reaction at Room Temperature[J]. Japanese Journal of Applied Physics, 1984, 23(5A): L257

[28]

Zai-Xiang Q, Yun S, Wei-Yu H, et al. Raman Scattering of Polycrystalline GaSb Thin Films Grown by the Co-Evaporation Process[J]. Chinese Physics B, 2009, 18(5): 2 012

[29]

Raisin C, Rocher A, Landa G, et al. GaSb/GaAs Heteroepitaxy Characterized as A Stress-Free System[J]. Applied Surface Science, 1991, 50(1–4): 434-439.

[30]

Kim S G, Asahi H, Seta M, et al. Raman Scattering Study of the Recovery Process in Ga Ion Implanted GaSb[J]. Journal of Applied Physics, 1993, 74(1): 579-585.

[31]

Loudon R. The Raman Effect In Crystals[J]. Advances in Physics, 2001, 50(7): 813-864.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/