Regulating the Localization of Intumescent Flame Retardant for Improving the Flame Retardancy of Ethylene-vinyl Acetate Copolymer Using Polyamide 6 as a Charring Agent

Xiping Gao , Pan Zhao , Dahu Yao , Chang Lu , Ruiheng Yue , Qi Sheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 701 -711.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 701 -711. DOI: 10.1007/s11595-023-2749-6
Organic Materials

Regulating the Localization of Intumescent Flame Retardant for Improving the Flame Retardancy of Ethylene-vinyl Acetate Copolymer Using Polyamide 6 as a Charring Agent

Author information +
History +
PDF

Abstract

Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6 phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT) showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy. Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend with the localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix, a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8% to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36% decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.

Keywords

intumescent flame retardant / charring agent / localization / polyamide 6 / ethylene vinyl acetate

Cite this article

Download citation ▾
Xiping Gao, Pan Zhao, Dahu Yao, Chang Lu, Ruiheng Yue, Qi Sheng. Regulating the Localization of Intumescent Flame Retardant for Improving the Flame Retardancy of Ethylene-vinyl Acetate Copolymer Using Polyamide 6 as a Charring Agent. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(3): 701-711 DOI:10.1007/s11595-023-2749-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu S F, Yang S Y, Kong Y N, et al. Anti-cracking Property of EVA-modified Polypropylene Fiber-reinforced Concrete Under Thermal-cooling Cycling Curing[J]. J. Wuhan Univ. Technol., 2019, 34(5): 1 109-1 118.

[2]

Yang G, Wu W H, Dong H X, et al. Synergistic Flame-retardant Effects of Aluminum Phosphate and Trimer in Ethylene-vinyl Acetate Composites[J]. J. Therm. Anal. Calorim., 2018, 132(2): 919-926.

[3]

Shi Y R, Kashiwagi T, Walters R N, et al. Ethylene Vinyl Acetate/Layered Silicate Nanocomposites Prepared by a Surfactantfree Method: Enhanced Flame Retardant and Mechanical Properties[J]. Polymer, 2009, 50(15): 3 478-3 487.

[4]

Cavodeau F, Otazaghine B, Sonnier R, et al. Fire Retardancy of Ethylene-vinyl Acetate Composites-Evaluation of Synergistic Effects between ATH and Diatomite Fillers[J]. Polym. Degrad. Stabil., 2016, 129: 246-259.

[5]

Zhou X H, Chen H, Chen Q H, et al. Synthesis and Characterization of Two-component Acidic Ion Intercalated Layered Double Hydroxide and Its Use as a Nanoflame-retardant in Ethylene Vinyl Acetate Copolymer (EVA)[J]. RSC Adv., 2017, 7(84): 53 064-53 075.

[6]

Lv Q, Huang J Q, Chen M J, et al. An Effective Flame Retardant and Smoke Suppression Oligomer for Epoxy Resin[J]. Ind. Eng. Chem. Res., 2013, 52(27): 9 397-9 404.

[7]

Su X Q, Yi Y W, Tao J, et al. Synergistic Effect between a Novel Triazine Charring Agent and Ammonium Polyphosphate on Flame Retardancy and Thermal Behavior of Polypropylene[J]. Polym. Degrad. Stabil., 2014, 105: 12-20.

[8]

Kim M, Ko H, Park S M. Synergistic Effects of Amine-modifed Ammonium Polyphosphate on Curing Behaviors and Flame Retardation Properties of Epoxy Composites[J]. Compos. Part B., 2019, 170: 19-30.

[9]

Gao S J, Li Y Z. Intumescent Flame-retardant Modification of Polypropylene/Carbon Fiber Composites[J]. J. Wuhan Univ. Technol., 2022, 37(2): 163-169.

[10]

Li B, Xu M J. Effect of a Novel Charring-foaming Agent on Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene[J]. Polym. Degrad. Stabil., 2006, 91(6): 1 380-1 386.

[11]

Shi X W, Ju Y Q, Jiang J L, et al. The Intumescent Flame-retardant Biocomposites of Poly(lactic acid) Containing Surface-coated Ammonium Polyphosphate and Distiller’s Dried Grains with Solubles (DDGS) [J]. Fire Mater., 2018, 42: 190-197.

[12]

Jin X D, Sun J, Mao Z W, et al. The Preparation of a Novel Intumescent Flame Retardant Based on Supramolecular Interactions and Its Application in Polyamide 11[J]. ACS Appl. Mater. Inter., 2017, 9(27): 24 964-24 975.

[13]

Dong L P, Deng C, Wang Y Z. Influence of Small Difference in Structure of Polyamide Charring Agents on Their Flame-retardant Efficiency in EVA[J]. Polym. Degrad. Stabil., 2017, 135: 130-139.

[14]

Yan Y W, Chen L, Jian R K, et al. Intumescence: An Effect Way to Flame Retardance and Smoke Suppression for Polystryene[J]. Polym. Degrad. Stabil., 2012, 97(8): 1 423-1 431.

[15]

Battegazzore D, Alongi J, Fontaine G, et al. Bulk vs Surface Flame Retardancy of Fully Bio-based Polyamide 10,10[J]. RSC Adv., 2015, 5(49): 39 424-39 432.

[16]

Feng C M, Li Z W, Liang M Y, et al. Preparation and Characterization of a Novel Oligomeric Charring Agent and Its Application in Halogen-free Flame Retardant Polypropylene[J]. J. Anal. Appl. Pyrol., 2015, 111: 238-246.

[17]

Lu C, Liu L, Chen N, et al. Influence of Clay Dispersion on Flame Retardancy of ABS/PA6/APP Blends[J]. Polym. Degrad. Stabil., 2015, 114: 16-29.

[18]

Chen Y J, Fang Z P, Yang C Z, et al. Effect of Clay Dispersion on the Synergism between Clay and Intumescent Flame Retardants in Polystyrene[J]. J. Appl. Polym. Sci., 2010, 115(2): 777-783.

[19]

Yu Y, Chen Z Q, Zhang Q W, et al. Modified Montmorillonite Combined with Intumescent Flame Retardants on the Flame Retardancy and Thermal Stability Properties of Unsaturated Polyester Resins[J]. Polym. Adv. Technol., 2019, 30(4): 998-1009.

[20]

Hu Y P, Wang X M, Li J. Regulating Effect of Exfoliated Clay on Intumescent Char Structure and Flame Retardancy of Polypropylene Composites[J]. Ind. Eng. Chem. Res., 2016, 55(20): 5892-5901.

[21]

Zhang S, Lu C, Gao X P, et al. Tailoring the Localization of Carbon Nanotubes and Ammonium Polyphosphate in Linear Low-density Polyethylene/nylon-6 Blends for Optimizing Their Flame Retardancy[J]. J. Nanomater., 2019, 2019: 659 7494.

[22]

Du B X, Fang Z P. Effects of Carbon Nanotubes on the Thermal Stability and Flame Retardancy of Intumescent Flame-retarded Polypropylene[J]. Polym. Degrad. Stabil., 2011, 96(10): 1 725-1 731.

[23]

Huang J G, Liang M Y, Feng C M, et al. Synergistic Effects of 4A Zeolite on the Flame-retardant Properties and Thermal Stability of an Efficient Halogen-free Flame-retardant EVA Composite[J]. Polym. Eng. Sci., 2016, 56(4): 380-387.

[24]

Khanal S, Lu Y H, Ahmed S, et al. Synergistic Effect of Zeolite 4A on Thermal, Mechanical and Flame Retardant Properties of Intumescent Flame Retardant HDPE Composites[J]. Polym. Test., 2020, 81: 106 177.

[25]

Quach Y, Cinausero N, Sonnier R, et al. Barrier Effect of Flame Retardant Systems in Poly(methylmethacrylate): Study of the Efficiency of the Surface Treatment by Octylsilane of Silica Nanoparticles in Combination with Phosphorous Fire Retardant Additives[J]. Fire Mater., 2012, 36(7): 590-602.

[26]

Wu Z H, Qu J P, Zhao Y Q, et al. Flammable and Mechanical Effects of Silica on Intumescent Flame Retardant/Ethylene-octene Copolymer/Polypropylene Composites[J]. J. Thermoplast. Compos. Mater., 2015, 28(7): 981-994.

[27]

Chen Y J, Zhan J, Zhang P, et al. Preparation of Intumescent Flame Retardant Poly(butylene succinate) Using Fumed Silica as Synergistic Agent[J]. Ind. Eng. Chem. Res., 2010, 49(17): 8 200-8 208.

[28]

Liu Y, Deng C L, Zhao J, et al. An Efficiently Halogen-free Flame-retardant Long-glass-fiber-reinforced Polypropylene System[J]. Polym. Degrad. Stabil., 2011, 96(3): 363-370.

[29]

Shan X Y, Han J, Song Y, et al. Flame Retardancy of Epoxy Resin/β-cyclodextrin@Resorcinol Bisdiphenylphosphate Inclusion Composites[J]. J. Wuhan Univ. Technol., 2020, 35(2): 455-463.

[30]

Feng C M, Zhang Y, Liu S W, et al. Synthesis of Novel Triazine Charring Agent and Its Effect in Intumescent Flame-retardant Polypropylene[J]. J. Appl. Polym. Sci., 2012, 123(6): 3 208-3 216.

[31]

Chen M, Tang M Q, Ma Y H, et al. Influence of Polyamide 6 as a Charring Agent on the Flame Retardancy, Thermal, and Mechanical Properties of Polypropylene Composites[J]. Polym. Eng. Sci., 2015, 55(6): 1 355-1 360.

[32]

Wang M, Li L T, Wang N, et al. Influence of PA6 as a Charring Agent on Flame Retardancy, Thermal and Mechanical Properties of LGFR PP Composites[J]. Int. Polym. Proc., 2018, 33(4): 535-542.

[33]

Monti M, Tsampas S A, Fernberg S P, et al. Fire Reaction of Nanoclay-doped PA6 Composites Reinforced with Continuous Glass Fibers and Produced by Commingling Technique[J]. Polym. Degrad. Stabil., 2015, 121: 1-10.

[34]

Liu Y, Feng Z Q, Wang Q. The Investigation of Intumescent Flame-retardant Polypropylene Using a New Macromolecular Charring Agent Polyamide 11[J]. Polym. Compos., 2009, 30(2): 221-225.

[35]

Zhong Y H, Wu W, Wu R, et al. The Flame Retarding Mechanism of the Novolac as Char Agent with the Fire Retardant Containing Phosphorous-nitrogen in Thermoplastic Poly(ether ester) Elastomer System[J]. Polym. Degrad. Stabil., 2014, 105: 166-177.

[36]

Deng P, Liu Y S, Liu Y, et al. Preparation of Phosphorus-containing Phenolic Resin and Its Application in Epoxy Resin as a Curing Agent and Flame Retardant[J]. Polym. Adv. Technol., 2018, 29(4): 1 294-1 302.

[37]

Jiao Y H, Wang XL, Wang Y Z, et al. Thermal Degradation and Combustion Behaviors of Flame-retardant Polypropylene/Thermoplastic Polyurethane Blends[J]. J. Macromol. Sci. B, 2009, 48(5): 889-909.

[38]

Chen M, Xu Y, Chen X L, et al. Thermal Stability and Combustion Behavior of Flame-retardant Polypropylene with Thermoplastic Polyurethane-microencapsulated Ammonium Polyphosphate[J]. High Perform. Polym., 2014, 26(4): 445-454.

[39]

Lu C, Cao Q Q, Hu X N, et al. Influence of Morphology and Ammonium Polyphosphate Dispersion on the Flame Retardancy of Polystyrene/Nylon-6 Blends[J]. Fire Mater., 2014, 38(8): 765-776.

[40]

Lu C, Yang D, Cao Q Q, et al. Influence of Morphology on the Flame Retardancy of Polystyrene/Nylon-6/Ammonium Polyphosphate/Clay Blends[J]. High Perform. Polym., 2014, 26(5): 507-516.

[41]

Lu C, Gao X P, Yao D H, et al. Improving Flame Retardancy of Linear Low-density Polyethylene/Nylon 6 Blends via Controlling Localization of Clay and Intumescent Flame Retardant[J]. Polym. Degrad. Stabil., 2018, 153: 75-87.

[42]

Horrocks A R, Sitpalan A, Kandola B K. Design and Characterisation of Bicomponent Polyamide 6 Fibres with Specific Locations of Each Flame Retardant Component for Enhanced Flame Retardancy[J]. Polym. Test., 2019, 79: 106 041.

[43]

Gallo E, Schartel B, Acierno D, et al. Tailoring the Flame Retardant and Mechanical Performances of Natural Fiber-reinforced Biopolymer by Multi-component Laminate[J]. Compos. Part B-Eng., 2013, 44(1): 112-119.

[44]

Virgilio N, Desjardins P, Esperance G L, et al. In Situ Measure of Interfacial Tensions in Ternary and Quaternary Immiscible Polymer Blends Demonstrating Partial Wetting[J]. Macromolecules, 2009, 42(19): 7 518-7 529.

[45]

Ravati S, Favis B D. Interfacial Coarsening of Ternary Polymer Blends with Partial and Complete Wetting Structures[J]. Polymer, 2013, 54(25): 6 739-6 751.

[46]

Mao Z P, Zhang J. Largely Improved the Low Temperature Toughness of Acrylonitrilestyrene-acrylate (ASA) Resin: Fabricated a Core-shell Structure of Two Elastomers through the Differences of Interfacial Tensions[J]. Appl. Surf. Sci., 2018, 444: 345-354.

[47]

Viretto A, Taguet A, Sonnier R. Selective Dispersion of Nanoplatelets of MDH in a HDPE/PBT Binary Blend: Effect on Flame Retardancy[J]. Polym. Degrad. Stabil., 2016, 126: 106-116.

[48]

Ma K, Li B, Xu M J. Simultaneously Improving the Flame Retardancy and Mechanical Properties for Polyamide 6/Aluminum Diethylphosphinate Composites by Incorporating of 1,3,5-Triglycidyl Isocyanurate[J]. Polym. Adv. Technol., 2017, 29(3): 1 068-1 077.

[49]

Sanchez-Olivares G, Rabe S, Perez-Chavez R, et al. Industrial-waste Agave Fibres in Flame-retarded Thermoplastic Starch Biocomposites[J]. Compos. Part B, 2019, 177: 107 370.

[50]

Zhang Y C, Cui L, Xu H, et al. Poly(lactic acid)/Cellulose Nanocrystal Composites via the Pickering Emulsion Approach: Rheological, Thermal and Mechanical Properties[J]. Int. J. Biol. Macromol., 2019, 137: 197-204.

[51]

Lin G G, Song Y H, Huang C T, et al. Rheology of Poly(lactic acid)/Poly(trimethylene terephthalate) Blends Compatibilized by Clay or Maleic Anhydride-grafted Poly(ethylene-octene) Elastomer[J]. J. Polym. Eng., 2019, 39(3): 248-253.

[52]

Zhao M, Yi D Q, Camino G, et al. Interdigitated Crystalline MMTMCA in Polyamide 6[J]. RSCAdv., 2017, 7(2): 861-869.

[53]

Xiao D, Li Z, Gohs U, et al. Functionalized Allylamine Polyphosphate as Novel Multifunctional Highly Efficient Fire Retardant for Polypropylene[J]. Polym. Chem., 2017, 8(40): 6 309-6 318.

[54]

Turgut G, Dogan M, Tayfun U, et al. The Effects of POSS Particles on the Flame Retardancy of Intumescent Polypropylene Composites and the Structure-property Relationship[J]. Polym. Degrad. Stabil., 2018, 149: 96-111.

[55]

Chen H D, Wang J H, Ni A Q, et al. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites[J]. Materials, 2018, 11(1): 111

[56]

Chen J L, Wang J H, Ni A Q, et al. Synthesis of a Novel Phosphorous-nitrogen Based Charring Agent and Its Application in Flame-retardant HDPE/IFR Composites[J]. Polymers, 2019, 11(6): 1062

[57]

Levchik S V, Costa L, Camino G. Effect of the Fire-retardant, Ammonium Polyphosphate, on the Thermal Decomposition of Aliphatic Polyamides: Part ll—Polyamide 6[J]. Polym. Degrad. Stabil., 1992, 36(3): 229-237.

[58]

Levchik S V, Levchik G F, Balabanovich A I, et al. Mechanistic Study of Combustion Performance and Thermal Decomposition Behaviour of Nylon 6 with Added Halogen-free Fire Retardants[J]. Polym. Degrad. Stabil., 1996, 54(2–3): 217-222.

[59]

Jiang Z W, Liu G S. Microencapsulation of Ammonium Polyphosphate with Melamine-formaldehyde-tris(2-hydroxyethyl) Isocyanurate Resin and Its Flame Retardancy in Polypropylene[J]. RSC Adv., 2015, 5(107): 88 445-88 455.

[60]

Dong L P, Huang S C, Li Y M, et al. A Novel Linear-chain Polyamide Charring Agent for the Fire Safety of Noncharring Polyolefin[J]. Ind. Eng. Chem. Res., 2016, 55(26): 7 132-7 141.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/