Structure, Formation, Properties, and Application of Calcium and Magnesium Silicate Hydrates System—A Review

Jianmin Xiao , Hui Li , Yaru Hu

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 604 -615.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 604 -615. DOI: 10.1007/s11595-023-2736-y
Cementitious Materials

Structure, Formation, Properties, and Application of Calcium and Magnesium Silicate Hydrates System—A Review

Author information +
History +
PDF

Abstract

In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H), at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H), we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO2-H2O. Moreover, we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO2-H2O. The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply; the formation and structural feature of CaO-MgO-SiO2-H2O is also explained in detail. Finally, the development of calcium and magnesium silicate hydrates in the future is pointed out, and the further research is discussed and estimated.

Keywords

calcium and magnesium silicate hydrates / thermodynamic properties / stability / structural feature

Cite this article

Download citation ▾
Jianmin Xiao, Hui Li, Yaru Hu. Structure, Formation, Properties, and Application of Calcium and Magnesium Silicate Hydrates System—A Review. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(3): 604-615 DOI:10.1007/s11595-023-2736-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lothenbach B, Nonat A. Calcium Silicate Hydrates: Solid and Liquid Phase Composition[J]. Cem. Concr. Res., 2015, 78: 57-70.

[2]

Jennings H M. A Model for the Microstructure of Calcium Silicate Hydrate in Cement Paste[J]. Cem. Concr. Res., 2000, 30: 101-116.

[3]

Richardson I G. The Calcium Silicate Hydrates[J]. Cem. Concr. Res., 2008, 38: 137-158.

[4]

Hamilton A, Hall C. Physicochemical Characterization of a Hydrated Calcium Silicate Board Material[J]. J. Build. Phys., 2005, 29: 9-19.

[5]

Meducin F, Bresson B, Lequeux N, et al. Calcium Silicate Hydrates Investigated by Solid-state High Resolution 1H and 29Si Nuclear Magnetic Resonance[J]. Cem. Concr. Res., 2007, 37: 631-638.

[6]

Bonaccorsi E, Merlino S. Modular Microporous Minerals: Cancrinitedavyne Group and C-S-H Phases[J]. Rev. Min. Geochem., 2005, 57: 241-290.

[7]

Richardson I G. The Nature of C-S-H in Hardened Cements[J]. Cem. Concr. Res., 1999, 29: 1131-1147.

[8]

Bonen D, Cohen M D. Magnesium Sulfate Attack on Portland Cement Paste-II. Chemical and Mineralogical Analyses[J]. Cem. Concr. Res., 1992, 22: 707-718.

[9]

Dauzeres A, Le Bescop P, Cau-Dit-Coumes C, et al. On the Physicochemical Evolution of Low-pH and CEM I Cement Pastes Interacting with Callovo-Oxfordian Pore Water Under Its in Situ CO2 Partial Pressure[J]. Cem. Concr. Res., 2014, 58: 76-88.

[10]

Dauzeres A, Achiedo G, Nied D, et al. Magnesium Perturbation in Low-pH Concretes Placed in Clayey Environment-Solid Characterizations and Modeling[J]. Cem. Concr. Res., 2016, 79: 137-150.

[11]

Calvo G, Garcia J L, Hidalgo A, et al. Development of Low-pH Cementitious Materials for HLRW Repositories: Resistance against Ground Waters Aggression[J]. Cem. Concr. Res., 2010, 40: 1290-1297.

[12]

Weerdt D K, Justnes H. The Effect of Sea Water on the Phase Assemblage of Hydrated Cement Paste[J]. Cem. Concr. Compos., 2015, 55: 215-222.

[13]

Jakobsen U H, Weerdt D K, Geikere M R. Elemental Zonation in Marine Concrete[J]. Cem.Concr.Res., 2016, 85: 12-27.

[14]

Jenni A, Mader U, Lerouge C, et al. In Situ Interaction between Different Concretes and Opalinus Clay[J]. Phys. Chem. Earth. Parts A/B/C, 2014, 70: 71-83.

[15]

Lerouge C, Gaboreau S, Grangeon S, et al. In Situ Interactions between Opalinus Clay and Low Alkali Concrete[J]. Phys. Chem. Earth. Parts A/B/C, 2017, 99: 3-21.

[16]

Mäder U, Jenni A, Lerouge C, et al. 5-year Chemico-physical Evolution of Concrete-claystone Interfaces[J]. Swiss J. Geosciences., 2017, 110: 307-327.

[17]

Kunther W, Lothenbach B, Scrivener K L. Deterioration of Mortar Bars Immersed in Magnesium Containing Sulfate Solutions[J]. Mater. Struct., 2013, 46: 2003-2011.

[18]

De Weerdt K, Justnes H. The Effect of Sea Water on the Phase Assemblage of Hydrated Cement Paste[J]. Cem. Concr. Compos., 2015, 55: 215-222.

[19]

Mojumder S C, Raki L. Preparation and Properties of Calcium Silicate Hydrate-poly(vinyl alcohol) Nanocomposite Materials[J]. J. Therm. Anal. Calorim., 2005, 82(1): 89-95.

[20]

Yao W, He L. Research Progress on Nanostructure of Calcium Siliate Hydrate[J]. J. Chin. Ceram. Soc., 2010, 38(4): 754-761. (in Chinese)

[21]

Brew D R M, Glasser F P. Synthesis and Characterisation of Magnesium Silicate Hydrate gels[J]. Cem. Concr. Res., 2005, 35: 85-98.

[22]

Du Y C, Wang X K, Wu J S, et al. Mg3Si4O10(OH)2 and MgFe2O4 in Situ Grown on Diatomite: Highly Efficient Adsorbents for the Removal of Cr(VI)[J]. Micropor. Mesopor. Mat., 2018, 271: 83-91.

[23]

Jadamba T, Kiyoshi O, Kenneth J D M. Formation of Layered Magnesium Silicate during the Aging of Magnesium Hydroxide-Silica Mixtures[J]. J. Am. Ceram. Soc., 1998, 81(3): 754-56.

[24]

Speakman K, Majumdar A J. Synthetic ‘Deweylite’[J]. Mineral. Mag., 1971, 38: 225-34.

[25]

Golubeva O Y, Korytkova E N, Gusarov V V. Hydrothermal Synthesis of Magnesium Silicate Montmorillonite for Polymer-clay Nanocomposites[J]. Russ. J. Appl. Chem., 2005, 78(1): 26-32.

[26]

Hipedinger N, Scian A, Aglietti E. Magnesia-phosphate Bond for Cold-setting Cordierite-based Refractories[J]. Cem. Concr. Res., 2002, 32(5): 675-682.

[27]

Nied D, Enemark R K, L’hoptal E, et al. Properties of Magnesium Silicate Hydrates (MSH)[J]. Cem. Concr. Res., 2016, 79: 323-332.

[28]

Roose C, Grangeon S, Blanc P, et al. Crystal Structure of Magnesium Silicate Hydrates(MSH): the Relation with 2: 1 Mg-Si Phyllosilicates[J]. Cem. Concr. Res., 2015, 73: 228-237.

[29]

Walling S A, Kinoshta H, Bernal S A, et al. Structure and Properties of Binder Gels Formed in the System Mg(OH)2-SiO2-H2O for Immobilization of Magnox Sludge[J]. Dalton. Trans., 2015, 44: 8126-8137.

[30]

Li Z, Zhang T, Hu J, et al. Characterization of Reaction Products and Reaction Process of MgO-SiO2-H2O System at Room Temperature[J]. Constr. Build. Mater., 2014, 61: 252.

[31]

Szczerba J, Prorok R, Sniezek E, et al. Influence of Time and Temperature on Ageing and Phases Synthesis in the MgO-SiO2-H2O System[J]. Thermochim. Acta, 2013, 567: 57-64.

[32]

Abbdel-Gawwad H A, El-Aleem S A, Amer A A, et al. Combined Impact of Silicate-amorphicity and MgO-reactivity on the Performance of Mg-silicate Cement[J]. Constr. Build. Mater., 2018, 189: 78-85.

[33]

Richardson I G. Tobermorite/jennite- and Tobermorite/Calcium Hydroxide-based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, β-dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-furnace Slag, Metakaolin, or Silica Fume[J]. Cem. Concr. Res., 2004, 34(9): 1733-1777.

[34]

Taylor H F W. Nanostructure of C-S-H: Current Status[J]. Adv. Cem. Based. Mater., 1993, 1(1): 38-46.

[35]

Taylor H F W. Cement Chemistry, 1997 2nd ed London: Thomas Telford.

[36]

Bonaccorsi E, Merlino S, Armbruster T. The Real Structure of Tobermorite 11 Å: Normal and Anomalous Forms, OD Character and Polytypic Modifications[J]. Eur. J. Mineral., 2001, 13: 577-590.

[37]

Renaudin G, Russias J, Leroux F, et al. Structural Characterization of C-S-H and C-A-S-H Samples-Part I: Long-Range Order Investigated by Rietveld Analyses[J]. J. Solid. State. Chem., 2009, 182(12): 3312-3319.

[38]

Renaudin G, Russias J, Leroux F, et al. Structural Characterization of C-S-H and C-A-S-H Samples-Part II: Local Environment Investigated by Spectroscopic Analyses[J]. J. Solid. State. Chem., 2009, 182(12): 3320-3329.

[39]

Richardson I G. Model Structures for C-(A)-S-H(I)[J]. Acta Crystallogr B, 2014, 70: 903-923.

[40]

Richardson I G. Tobermorite/jennite- and Tobermorite/calcium Hydroxide-based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, β-dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-Furnace Slag, Metakaolin, or Silica Fume[J]. Cem. Concr. Res., 2004, 34(9): 1733-1777.

[41]

Li B, Chen W. Development on Molecular Structure of Calcium Silicate Hydrate Gel[J]. J. Chin. Ceram. Soc., 2019, 47(8): 1097-1099. (in Chinese)

[42]

Bernard E, Lothenbach B, Chlihlique C, et al. Characterization of Magnesium Silicate Hydrate (M-S-H)[J]. Cem. Concr. Res., 2019, 116: 309-330.

[43]

Lerouge C, Gaboreau S, Claret F, et al. In Situ Interactions between Opalinus Clay and Low Alkali Concrete[J]. Phys. Chem. Earth, Parts A/B/C, 2017, 99: 3-21.

[44]

Tonelli M, Martini F, Calucci L, et al. Traditional Portland Cement and MgO-based Cement: a Promising Combination?[J]. Phys. Chem. Earth., 2017, 99: 158-167.

[45]

Bernard E, Lothenbach B, Cau-Dit-Coumes C, et al. Magnesium and Calcium Silicate Hydrates, Part I: Investigation of the Possible Magnesium Incorporation in Calcium Silicate Hydrate (C-S-H) and of the Calcium in Magnesium Silicate Hydrate (M-S-H)[J]. App. Geochem., 2018, 89: 229-242.

[46]

Bernard E, Dauzères A, Lothenbach B. Magnesium and Calcium Silicate Hydrates, Part II: Mg-exchange at the Interface “low-pH” Cement and Magnesium Environment Studied in a C-S-H and M-S-H Model System[J]. App. Geochem., 2018, 89: 210-218.

[47]

Wei J X, Yu Q, Zhang W, et al. Reaction Products of MgO and Microsilica Cementitious Materials at Different Temperatures[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(4): 745-748.

[48]

Hans Wedepohl K. The Composition of the Continental Crust[J]. Mineral Mag, 1994, 58(7): 1217-1232.

[49]

Jia Y. Effect of Na-HMP and CaO on the Reaction Mechanism of MgO-SiO2-H2O System[D], 2017 Dalian: Dalian University of Technology. (in Chinese)

[50]

Hamid S A. The Crystal Structure of 11 Å Natural Tobermorite Ca2.25[-Si3O7.5(OH)1.5]·1H2O[J]. Z. Kristallogr., 1981, 154: 189-198.

[51]

Yu P, Kirkpatrick R J. Thermal Dehydration of Tobermorite and Jennite[J]. Concr. Sci. Eng., 1999, 1: 185-191.

[52]

Black L, Stumm A, Garbev K, et al. X-ray Photoelectron Spectroscopy of Aluminium-substituted Tobermorite[J]. Cem. Concr. Res., 2005, 35: 51-55.

[53]

Coleman N J. Synthesis, Structure and Ion Exchange Properties of 11 Å Tobermorites from Newsprint Recycling Residue[J]. Mater. Res. Bull., 2005, 40: 2000-2013.

[54]

Maeshima T, Noma H, Sakiyama M, et al. Natural 1.1 and 1.4 nm Tobermorites from Fuka, Okayama, Japan: Chemical Analysis, Cell Dimensions, 29Si NMR and Thermal Behavior[J]. Cem. Concr. Res., 2003, 33: 1515-1523.

[55]

Bonaccorsi E, Merlino S, Kampf A R. The Crystal Structure of Tobermorite 14 Å (Plombierite), a C-S-H Phase[J]. J. Am. Ceram. Soc., 2005, 88: 505-512.

[56]

Kumar A, Walder B J, Mohamed A K, et al. The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate[J]. J. Phys.Chem.C, 2017, 121: 17188-17196.

[57]

Du P, Chen W C, Wang H Z. Magnesium Silicates and Its Applications[J]. J. Salt. Chem. Indus., 2013, 421–6 (in Chinese)

[58]

Bowen N, Tuttle O. The System MgO-SiO2-H2O[J]. Geolog. Soc. Amer. Bull., 1949, 60(3): 439-460.

[59]

Xu J X. Preparation and Characterization of High Dispersion Hexagonal Magnesium Hydroxide[D], 2018 Shanghai: East China Normal University. (in Chinese)

[60]

Cailleriej D D L, Kermarec M, Clause O. 29Si NMR Observation of an Amorphous Magnesium Silicate Formed during Impregnation of Silica with Mg(II) in Aqueous Solution[J]. J. Phys. Chem., 1995, 99(47): 17273-17281.

[61]

Tonelli M, Martini F, Calucci L, et al. Structural Characterization of Magnesium Silicate Hydrate: towards the Design of Eco-sustainable Cements[J]. Dalton. T., 2016, 45(8): 3294-3304.

[62]

Mackenzie K J D, Brown L W M, Ranchod P, et al. Silicate Bonding of Inorganic Materials[J]. J. Mater. Sci., 1991, 26(3): 763-768.

[63]

Conway B. Ion Hydration Co-sphere Interactions in the Double-layer and Ionic Solutions[J]. J. Electroanal. Chem. Interfacial. Electrochem., 1981, 123: 81-94.

[64]

Qian G R, Li A M, Xu G L, et al. Hydrothermal Products of the C3MS2-C12A7-MgO System[J]. Cem. Concr. Res., 1997, 27(12): 1791-1797.

[65]

Vespa B, Othenbach B L, Dähn R, et al. Characterisation of Magnesium Silicate Hydrate Phases (M-S-H): A Combined Approach Using Synchrotron-based Absorption Spectroscopy and ab initio Calculations[J]. Cem. Concr. Res., 2018, 109: 175-183.

[66]

Damidot D, Lothenbach B, Herfort D, et al. Thermodynamics and Cement Science[J]. Cem. Concr. Res., 2011, 41(7): 679-695.

[67]

Sun L, Zhu Y. A Serial Two-stage Viscoelastic-viscoplastic Constitutive Model with Thermodynamical Consistency for Characterizing Time-dependent Deformation Behavior of Asphalt Concrete Mixtures[J]. Constr. Build. Mater., 2013, 40: 584-595.

[68]

Kulik D, Wagner T, Dmytrieva S V, et al. GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes[J]. Comput. Geochem., 2013, 17: 1-24.

[69]

Thoenen T, Hummel W, Berner U, et al. The PSI/Nagra Chemical Thermodynamic Database 12/07[R]. PSI Report 14-04, Villigen PSI, 2014

[70]

Li Z H. Reaction Mechanisms and Application Study of MgO-SiO2-H2O Cementitious System[D], 2015 Guangzhou: South China University of Technology. (in Chinese)

[71]

Lothbach B, Nied D, L’hôpital E, et al. Magnesium and Calcium Silicate Hydrates[J]. Cem. Concr. Res., 2015, 77: 60-68.

[72]

Chiang W S, Ferraro G, Fratini E, et al. Multiscale Structure of Calcium- and Magnesiumsilicate-hydrate Gels[J]. J. Mater. Chem. A, 2014, 2: 12991-12998.

[73]

Xu G L, Lai Z Y, Qian G R, et al. Thermodynamic Study on CaO-MaO-SiO2-H2O System[J]. J. Southwest.Inst. Technol., 1999, 14(3): 1-5. (in Chinese)

[74]

Fan F Z, Qian G R, Lai Z Y, et al. Competition Mechanism of Reactant and Transition Mechanism of Resultant of CaO-MaO-SiO2-H2O Hydrothermal System[J]. J. Southwest. Inst. Technol., 2000, 15(4): 1-4. (in Chinese)

[75]

Fan F Z, Qian G R, Lai Z Y, et al. Thermodynamic Study on CaO-MaO-SiO2-H2O System[J]. B. Chin. Ceram. Soc., 2001, 20(1): 18-23. (in Chinese)

[76]

Lu D Y, Zheng Y Z, Liu Y D, et al. Effect of Light-burned Magnesium Oxide on Deformation Behavior of Geopolymer and Its Mechanism[J]. J. Chin. Ceram. Soc., 2012, 40(11): 1625-1630.

[77]

Bernard E, Lothenbach B, Rentsch D, et al. Formation of Magnesium Silicate Hydrates (M-S-H)[J]. Phys. Chem. Earth, Parts A/B/C, 2017, 99: 142-157.

[78]

Kulik D A. Improving the Structural Consistency of CSH Solid Solution Thermodynamic Models[J]. Cem. Concr. Res., 2011, 41: 477-495.

[79]

Bernard E, Lothenbach B, Goff F L, et al. Effect of Magnesium on Calcium Silicate Hydrate (C-S-H)[J]. Cem. Concr. Res., 2017, 97: 61-72.

[80]

Mostafa N Y, Kishar E A, Abo-el-enein S A. FTIR Study and Cation Exchange Capacity of Fe3+ and Mg2+ Substituted Calcium Silicate Hydrates[J]. J. Alloys. Compd., 2009, 473(1): 538-542.

[81]

Tang Y J, Chen W. Effect of Magnesium on the Structure and Chemical Composition of Calcium Silicate Hydrate at Elevated Temperature[J]. Constr. Build. Mater., 2020, 240: 117 925.

[82]

Jia Y, Wang B, Wu Z, et al. Effect of CaO on the Reaction Process of MgO-SiO2-H2O Cement Pastes[J]. Mater. Lett., 2017, 192: 48-51.

[83]

Martinia F, Tonellic M, Geppia M, et al. Hydration of MgO/SiO2 and Portland Cement Mixtures: A Structural Investigation of the Hydrated Phases by Means of X-ray Diffraction and Solid State NMR Spectroscopy[J]. Cem. Concr. Res., 2017, 102: 60-67.

[84]

Amaral L F, Oliveira I R, Bonadia P, et al. Chelants to Inhibit Magnesia (MgO) Hydration[J]. Ceram. Int., 2011, 37: 1537-1542.

[85]

Shrivastava O P, Komarneni S, Breval E. Mg2+ Uptake by Synthetic Tobermorite and Xonotlite[J]. Cem. Concr. Res., 1991, 21(1): 83-90.

[86]

Qian G R, Xu G L, Li H Y, et al. Mg-Xonotlite and Its Coexisting Phases[J]. Cem. Concr. Res., 1997, 27(3): 315-320.

[87]

Fernandez L, Alonso C, Andrade C, et al. The Interaction of Magnesium in Hydration of C3S and CSH Formation Using 29Si MAS-NMR[J]. J. Mater. Sci., 2008, 43(17): 5772-5783.

[88]

Fernandez L, Alonso C, Andrade C. The Role of Magnesium during the Hydration of C3S and CSH Formation. Scanning Electron Microscopy and Mid-infrared Studies[J]. Adv. Cem. Res., 2005, 17(1): 9-21.

[89]

Song Q, Hu Y R, Wang Q, et al. Research Development of Magnesium Silicate Hydrate Cement[J]. J. Chin. Ceram. Soc., 2019, 47(11): 1643-1651. (in Chinese)

[90]

Zhang T, Cheeseman C R, Vandeperre L J. Development of Low pH Cement Systems Forming Magnesium Silicate Hydrate (MSH)[J]. Cem. Conc. Res., 2011, 41(4): 439-442.

[91]

Jin F, Al-Tabbaa A. Strength and Hydration Products of Reactive MgO-silica Pastes[J]. Cem. Conc. Comp., 2014, 52: 27-33.

[92]

Jin F, Gu K, Al-Tabbaa A. Strength and Drying Shrinkage of Reactive MgO Modified Alkali-actived Slag Paste[J]. Constr. Build. Mater., 2014, 51: 395-404.

[93]

Jin F, Al-Tabbaa A. Strength and Drying Shrinkage of Slag Paste Actived by Sodium Carbonate and Reactive MgO[J]. Constr. Build. Mater., 2015, 81: 58-65.

[94]

Jin F, Gu K, Al-Tabbaa A. Strength and Hydration Properties of Reactive MgO-actived Ground Grnulted Blast Furnace Slag Paste[J]. Cem. Conc. Comp., 2015, 57: 8-16.

[95]

Fang Y H, Liu J F, Chen Y Q. Effect of Magnesia on Properties and Microstructure of Alkali-activated Slag Cement[J]. Water. Sci. Engineer., 2011, 4: 463-469.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/