First Principle Study of Cesium-based Lead-free Halide Double Perovskites

Wei Zheng , Xiaoyan Gan , Dingjin Du , Yajie Wang , Siqi Dai , Liling Guo , Hanxing Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 520 -529.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 520 -529. DOI: 10.1007/s11595-023-2727-z
Advanced Materials

First Principle Study of Cesium-based Lead-free Halide Double Perovskites

Author information +
History +
PDF

Abstract

Inorganic halide double perovskites A2B′B″X6 have gained significant interests for their diverse composition, stable physicochemical properties, and potential for photoelectric applications. The influences of trivalent and monovalent cations on the formation energy, decomposition energy, electronic structure and optical properties of cesium-based lead-free Cs2B′B″Br6 (B′ = Na+, In+ Cu+, or Ag+; B′= Bi3+, Sb3+, In3+) are systematically studied. In view of the analysis and results of the selected double perovskites, for the double perovskites with different B-site trivalent cation, the band gap increases in the order of Cs2AgInBr6, Cs2AgSbBr6 and Cs2AgBiBr6, with Cs2AgBiBr6 possessing the highest thermodynamic stability. Therefore, the Bi-based perovskites are further studied to elucidate the effect of monovalent cation on their stability and electronics. Results show that the thermodynamic stability rises in the sequence of Cs2NaBiBr6, Cs2InBiBr6, Cs2AgBiBr6 and Cs2CuBiBr6. Notably, Cs2CuBiBr6 exhibits a relatively narrow and appropriate band gap of 1.463 4 eV, together with the highest absorption coefficient than other compounds, suggesting that Cs2CuBiBr6 is a promising light absorbing material that can be further explored experimentally and be applied to optoelectronic devices. Our research offers theoretical backing for the potential optoelectronic application of cesium-based lead-free halide double perovskites in solar energy conversion.

Keywords

lead-free double perovskites / density functional theory / Cs2B′B′Br6 / stability / electronic properties / optical property / stability

Cite this article

Download citation ▾
Wei Zheng, Xiaoyan Gan, Dingjin Du, Yajie Wang, Siqi Dai, Liling Guo, Hanxing Liu. First Principle Study of Cesium-based Lead-free Halide Double Perovskites. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(3): 520-529 DOI:10.1007/s11595-023-2727-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jeon N J, Noh J H, Yang W S, et al. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells[J]. Nature, 2015, 517(7535): 476-480.

[2]

Lee M M, Teuscher J, Miyasaka T, et al. Efficient Hybrid Solar Cells Based On Meso-Superstructured Organometal Halide Perovskites[J]. Science, 2012, 338(6107): 643-647.

[3]

Zhang T, Cai Z, Chen S. Chemical Trends in The Thermodynamic Stability and Band Gaps of 980 Halide Double Perovskites: A High-Throughput First-Principles Study[J]. ACS Appl. Mater. Interfaces, 2020, 12(18): 20680-20690.

[4]

Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals[J]. Science, 2017, 358(6364): 745-750.

[5]

Zhao Y, Zhu K. Organic-Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications[J]. Chem. Soc. Rev., 2016, 45(3): 655-689.

[6]

Stoumpos C C, Frazer L, Clark D J, et al. Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties[J]. J. Am. Chem. Soc., 2015, 137(21): 6804-6819.

[7]

Leng M, Chen Z, Yang Y, et al. Lead-Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots[J]. Angew. Chem. Int. Ed., 2016, 55(48): 15012-15016.

[8]

Zhou J, Xia Z, Molokeev M S, et al. Composition Design, Optical Gap and Stability Investigations of Lead-Free Halide Double Perovskite Cs2AgInCl6[J]. J. Mater. Chem. A., 2017, 5(29): 15031-15037.

[9]

Xia Z, Ma C, Molokeev M S, et al. Chemical Unit Cosubstitution and Tuning of Photoluminescence in the Ca2(Al1−xMgx)(Al1−xsi1+x)O7: Eu2+ Phosphor[J]. J. Am. Chem. Soc., 2015, 137(39): 12494-12497.

[10]

Vasala S, Karppinen M. A2B′B″O6 Perovskites: A Review[J]. Prog. Solid State Chem., 2015, 43(1–2): 1-36.

[11]

Berger R F, Neaton J B. Computational Design of Low-Band-Gap Double Perovskites[J]. Phys. Rev. B, 2012, 86(16): 165

[12]

Pan W, Wu H, Luo J, et al. Cs2AgBiBr6 Single-Crystal X-Ray Detectors with a Low Detection Limit[J]. Nat. Photonics., 2017, 11(11): 726-732.

[13]

Gao W, Ran C, Xi J, et al. High-Quality Cs2AgBiBr6 Double Perovskite Film for Lead-Free Inverted Planar Heterojunction Solar Cells With 2.2% Efficiency[J]. Chem. Phys. Chem., 2018, 19(14): 1696-1700.

[14]

Wang B, Li N, Yang L, et al. Chlorophyll Derivative-Sensitized Tio2 Electron Transport Layer for Record Efficiency of Cs2AgBiBr6 Double Perovskite Solar Cells[J]. J. Am. Chem. Soc., 2021, 143(5): 2207-2211.

[15]

Zhang Z, Sun Q, Lu Y, et al. Hydrogenated Cs2AgBiBr6 for Significantly Improved Efficiency of Lead-Free Inorganic Double Perovskite Solar Cell[J]. Nature Communications, 2022, 13(1): 3397

[16]

Luo J, Wang X, Li S, et al. Efficient and Stable Emission of Warm-White Light from Lead-Free Halide Double Perovskites[J]. Nature, 2018, 563(7732): 541-545.

[17]

Zhao F, Song Z, Zhao J, et al. Double Perovskite Cs2AgInCl6: Cr3+: Broadband and Near-Infrared Luminescent Materials[J]. Inorg. Chem. Front., 2019, 6(12): 3621-3628.

[18]

Xiao Z, Meng W, Wang J, et al. Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites[J]. Chemsuschem, 2016, 9(18): 2628-2633.

[19]

Anbarasan R, Srinivasan M, Suriakarthick R, et al. Exploring the Structural, Mechanical, Electronic, and Optical Properties of Double Perovskites of Cs2AgInX6 (X= Cl, Br, I) by First-Principles Calculations[J]. J. Solid State Chem., 2022, 310: 123 025.

[20]

Zhao S, Yamamoto K, Iikubo S, et al. First-Principles Study of Electronic and Optical Properties of Lead-Free Double Perovskites Cs2Na-BX6 (B= Sb, Bi; X= Cl, Br, I)[J]. J. Phys. Chem. Solids., 2018, 117: 117-121.

[21]

Roknuzzaman M, Alarco J A, Wang H, et al. Structural, Electronic and Optical Properties of Lead-Free Antimony-Copper Based Hybrid Double Perovskites for Photovoltaics and Optoelectronics by First Principles Calculations[J]. Comput. Mater. Sci., 2021, 186: 110 009.

[22]

Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals[J]. Phys. Rev. B, 1993, 47(1): 558

[23]

Kresse G, FurthmÜLler J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50.

[24]

Blöchl P E, Jepsen O, Andersen O K. Improved Tetrahedron Method for Brillouin-Zone Integrations[J]. Phys. Rev. B., 1994, 49(23): 16223

[25]

Tao J, Perdew J P, Tang H, et al. Origin of the Size-Dependence of the Equilibrium Van Der Waals Binding Between Nanostructures[J]. J. Chem. Phys., 2018, 148(7): 74110

[26]

Wang V, Xu N, Liu J, et al. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code[J]. Comput. Phys. Commun., 2021, 267: 108 033.

[27]

Chen C, Liu L, Wen Y, et al. Elastic Properties of Orthorhombic YBa2Cu3O7 under Pressure[J]. Crystals, 2019, 9(10): 497

[28]

Momma K, Izumi F. VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis[J]. J. Appl. Crystallogr., 2008, 41(3): 653-658.

[29]

Jain A, Ong S P, Hautier G, et al. Commentary: the Materials Project: a Materials Genome Approach to Accelerating Materials Innovation[J]. APL Mater., 2013, 1(1): 11002

[30]

Filip M R, Hillman S, Haghighirad A A, et al. Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment[J]. J. Phys. Chem. Lett., 2016, 7(13): 2579-2585.

[31]

Lan C, Luo J, Dou M, et al. First-Principles Calculations of the Oxygen-Diffusion Mechanism in Mixed Fe/Ti Perovskites for Solid-Oxide Fuel Cells[J]. Ceram. Int., 2019, 45(14): 17646-17652.

[32]

Bartel C J, Sutton C, Goldsmith B R, et al. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides[J]. Sci. Adv., 2019, 5(2): V693

[33]

Li C, Lu X, Ding W, et al. Formability of ABX3 (X=F, Cl, Br, I) Halide Perovskites[J]. Acta Crystallogr. B, 2008, 64(6): 702-707.

[34]

Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Crystallogr. A, 1976, 32(5): 751-767.

[35]

Sun Y, Fernandez-Carrion A J, Liu Y, et al. Bismuth-Based Halide Double Perovskite Cs2LiBiCl6: Crystal Structure, Luminescence, and Stability[J]. Chem. Mater., 2021, 33(15): 5905-5916.

[36]

Xiao Z, Du K Z, Meng W, et al. Chemical Origin of the Stability Difference Between Copper (I)-and Silver (I)-Based Halide Double Perovskites[J]. Angew. Chem., 2017, 129(40): 12275-12279.

[37]

Creutz S E, Crites E N, De Siena M C, et al. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange to Access New Materials[J]. Nano Lett., 2018, 18(2): 1118-1123.

[38]

Roknuzzaman M, Alarco J A, Wang H, et al. Ab Initio Atomistic Insights into Lead-Free Formamidinium Based Hybrid Perovskites for Photovoltaics and Optoelectronics[J]. Comput. Mater. Sci., 2019, 169: 109 118.

[39]

Du M H. Efficient Carrier Transport in Halide Perovskites: Theoretical Perspectives[J]. J. Mater Chem. A, 2014, 2(24): 9091-9098.

[40]

Brivio F, Butler K T, Walsh A, et al. Relativistic Quasiparticle Self-Consistent Electronic Structure of Hybrid Halide Perovskite Photovoltaic Absorbers[J]. Phys. Rev. B, 2014, 89(15): 155

[41]

Siad A B, Baira M, Siad M B. Structural, Mechanical, Optoelectronic and Thermoelectric Properties of Double Perovskite Compounds Cs2TeX6 (X= Br, I) for Energy Storage Applications: First Principles Investigations[J]. J. Phys. Chem. Solids, 2021, 152: 109.

[42]

Slavney A H, Hu T, Lindenberg A M, et al. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications[J]. J. Am. Chem. Soc., 2016, 138(7): 2138-2141.

[43]

Ganose A M, Cuff M, Butler K T, et al. Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: Biof, Biocl, Biobr, and Bioi[J]. Chem. Mater., 2016, 28(7): 1980-1984.

[44]

Aslam F, Ullah H, Hassan M. Theoretical Investigation of Cs2InBiX6 (X= Cl, Br, I) Double Perovskite Halides Using First-Principle Calculations[J]. Mater. Sci. Eng. B, 2021, 274: 115.

[45]

Anbarasan R, Srinivasan M, Suriakarthick R, et al. Exploring the Structural, Mechanical, Electronic, and Optical Properties of Double Perovskites of Cs2AgInX6 (X= Cl, Br, I) by First-Principles Calculations[J]. J. Solid State Chem., 2022, 310: 123 025.

[46]

Wei F, Deng Z, Sun S, et al. Enhanced Visible Light Absorption for Lead-Free Double Perovskite Cs2AgSbBr6[J]. Chem. Commun., 2019, 55(26): 3721-3724.

[47]

Slavney A H, Hu T, Lindenberg A M, et al. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications[J]. J. Am. Chem. Soc., 2016, 138(7): 2138-2141.

[48]

Wang K, He Y, Zhang M, et al. Promising Lead-Free Double-Perovskite Photovoltaic Materials Cs2MM’Br6 (M= Cu, Ag, And Au; M’= Ga, In, Sb, And Bi) with an Ideal Band Gap and High Power Conversion Efficiency[J]. J. Phys. Chem. C, 2021, 125(38): 21160-21168.

[49]

Suzuki S, Tsuyama M. Theoretical Study on Optical Absorption of Lead-Free Double Perovskites Cs2AgBiBr6 and Cs2InBiBr6[J]. J. Phys. Soc. Jpn., 2019, 88(7): 75002

[50]

Lamba R S, Basera P, Singh S, et al. Lead-Free Alloyed Double-Perovskite Nanocrystals of (Naxag1−x)Bibr6 with Tunable Band Gap[J]. J. Phys. Chem. C, 2021, 125(3): 1954-1962.

[51]

Li M, Chen H, Ming S, et al. First-Principles Calculations of the Structural, Electronic and Optical Properties of Cs2AgxNa1−xInbr6 Double Perovskites[J]. Chem. Phys., 2022, 559: 111.

[52]

Menedjhi A, Bouarissa N, Saib S, et al. Halide Double Perovskite Cs2AgInBr6 for Photovoltaic, s Applications: Optical Properties and Stability[J]. Optik, 2021, 243: 167.

[53]

Aslam F, Ullah H, Hassan M. Theoretical Investigation of Cs2InBiX6 (X= Cl, Br, I) Double Perovskite Halides Using First-Principle Calculations[J]. Mater. Sci. Eng. B, 2021, 274: 115.

[54]

Giorgi G, Fujisawa J, Segawa H, et al. Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis[J]. J. Phys. Chem. Lett., 2013, 4(24): 4213-4216.

[55]

Yin W, Shi T, Yan Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber[J]. Appl. Phys. Lett., 2014, 104(6): 63903

[56]

Roknuzzaman M, Ostrikov K K, Wasalathilake K C, et al. Insight into Lead-Free Organic-Inorganic Hybrid Perovskites for Photovoltaics and Optoelectronics: A First-Principles Study[J]. Org. Electron., 2018, 59: 99-106.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/