Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes

Wenbo Wang , Wenhao Xiong , Yuting Long , Hong Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 505 -513.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 505 -513. DOI: 10.1007/s11595-023-2725-1
Advanced Materials

Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes

Author information +
History +
PDF

Abstract

We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity. The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) self-assembled on polyelectrolyte (PE) multilayers, for which Au@Ag-NRs were controlled by adjusting the silver layer thickness. The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated. The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm. Under the condition of optimizing silver layer thickness, the fiber probe exhibits ultra-high sensitivity (i e, 10−10 M crystalline violet, CV), good reproducibility (i e, RSD of 3.5%) and stability. Besides, electromagnetic field distribution of the SERS fiber probe was also investigated. The strongest enhancement is found within the core of fiber, whereas a weakened electromagnetic field exists in the fiber cladding layer. The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.

Keywords

surface-enhanced Raman scattering (SERS) / optical fiber probe / self-assembly / Au@Ag core-shell nanorods (Au@Ag-NRs) / polyelectrolyte multilayers

Cite this article

Download citation ▾
Wenbo Wang, Wenhao Xiong, Yuting Long, Hong Li. Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(3): 505-513 DOI:10.1007/s11595-023-2725-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fateixa S, Pinheiro P C, Nogueira H I S, et al. Gold Loaded Textile Fibres as Substrates for SERS Detection[J]. J. Mol. Struct., 2019, 1185: 333-340.

[2]

Lu Z, Wei W, Yang J, et al. Improved SERS Performance of a Silver Triangular Nanoparticle/TiO2 Nanoarray Heterostructure and Its Application for Food Additive Detection[J]. New J. Chem., 2022, 46(15): 7070-7077.

[3]

Lai H, Xu F, Wang L. A Review of the Preparation and Application of Magnetic Nanoparticles for Surface-enhanced Raman Scattering[J]. J Mater Sci., 2018, 53(12): 8677-8698.

[4]

Lim J, Nam J, Shin H, et al. Identification of Newly Emerging Influenza Viruses by Detecting the Virally Infected Cells Based on Surface Enhanced Raman Spectroscopy and Principal Component Analysis[J]. Anal. Chem., 2019, 91(9): 5677-5684.

[5]

Qu Q, Wang J, Zeng C, et al. AuNP Array Coated Substrate for Sensitive and Homogeneous SERS Immunoassay Detection of Human Immunoglobulin G[J]. RSC Adv., 2021, 11(37): 22744-22750.

[6]

Xu K, Zhou R, Takei K, et al. Toward Flexible Surface-enhanced Raman Scattering (SERS) Sensors for Point-of-care Diagnostics[J]. Adv. Sci., 2019, 6(16): 1900925

[7]

Jiang C, Huang F, Chen Y, et al. Highly Uniform Self-assembled Monolayers of Silver Nanospheres for the Sensitive and Quantitative Detection of Glutathione by SERS[J]. Dalton Trans., 2021, 50(30): 10436-10445.

[8]

Huang J, He Z, Liu Y, et al. Large Surface-enhanced Raman Scattering from Nanoporous Gold Film Over Nanosphere[J]. Appl. Surf. Sci., 2019, 478: 793-801.

[9]

Meng X, Dyer J, Huo Y, et al. Greater SERS Activity of Ligand-stabilized Gold Nanostars with Sharp Branches[J]. Langmuir, 2020, 36(13): 3558-3564.

[10]

Ukaegbu M, Enwerem N, Bakare O, et al. Probing the Adsorption and Orientation of 2, 3-dichloro-5, 8-dimethoxy-1, 4-naphthoquinone on Gold Nano-rods: A SERS and XPS Study[J]. J. Mol. Struct., 2016, 1114: 197-205.

[11]

Tadesse L F, Ho C S, Chen D H, et al. Plasmonic and Electrostatic Interactions Enable Uniformly Enhanced Liquid Bacterial Surface-enhanced Raman Scattering (SERS)[J]. Nano Lett., 2020, 20(10): 7655-7661.

[12]

Kim N, Kim S, Choi M, et al. Combination of Periodic Hybrid Nanopillar Arrays and Gold Nanorods for Improving Detection Performance of Surface-enhanced Raman Spectroscopy[J]. Sens. Actuators B Chem., 2018, 258: 18-24.

[13]

Ma P, Liang F, Diao Q, et al. Selective and Sensitive SERS Sensor for Detection of Hg2+ in Environmental Water Base on Rhodamine-bonded and Amino Group Functionalized SiO2-Coated Au-Ag Core-shell Nanorods[J]. RSC Adv., 2015, 5(41): 32168-32174.

[14]

Solís D M, Taboada J M, Obelleiro F, et al. Optimization of Nanoparticle-based SERS Substrates Through Large-scale Realistic Simulations[J]. ACS Photonics., 2017, 4(2): 329-337.

[15]

Dang L T, Le Nguyen H, Van Pham H, et al. Shell Thickness-controlled Synthesis of Au@ Ag Core-shell Nanorods Structure for Contaminants Sensing by SERS[J]. Nanotechnology, 2021, 33(7): 075704

[16]

Khlebtsov B N, Khanadeev V A, Burov A M, et al. A New Type of SERS Tags: Au@ Ag Core/shell Nanorods with Embedded Aromatic Molecules[J]. Nanotechnol., 2017, 12(9): 495-507.

[17]

Chen Z, Sun Y, Shi J, et al. Facile Synthesis of Au@ Ag Core-shell Nanorod with Bimetallic Synergistic Effect for SERS Detection of Thiabendazole in Fruit Juice[J]. Food Chem., 2022, 370: 131276.

[18]

Weatherston J D, Worstell N C, Wu H J. Quantitative Surface-enhanced Raman Spectroscopy for Kinetic Analysis of Aldol Condensation Using Ag-Au Core-shell Nanocubes[J]. Analyst, 2016: 6051–6060

[19]

Long Y, Wang W, Xiong W, et al. Hybrid Structure Design, Preparation of Ag-GO SERS Optical Fiber Probe and Its Chemical, Electromagnetic Enhancement Mechanism[J]. J. Alloys Compd., 2022, 901: 163660.

[20]

Cao J, Wang J. Development of Ag Nanopolyhedra Based Fiber-optic Probes for High Performance SERS Detection[J]. New J. Chem., 2015, 39(4): 2421-2424.

[21]

Sánchez-Solís A, Karim F, Alam M S, et al. Print Metallic Nanoparticles on a Fiber Probe for 1 064-nm Surface-enhanced Raman Scattering[J]. Opt. Lett., 2019, 44(20): 4997-5000.

[22]

Wang C, Zeng L, Li Z, et al. Review of Optical Fibre Probes for Enhanced Raman Sensing[J]. J. Raman Spectrosc., 2017, 48(8): 1040-1055.

[23]

Long Y, Li H, Yang X, et al. Controlling Silver Morphology on a Cramped Optical Fiber Facet via a PVP-assisted Silver Mirror Reaction for SERS Fiber Probe Fabrication[J]. New J. Chem., 2021, 45(8): 4004-4015.

[24]

Grace D C, Subrahmanyam A, Sai V. Development of Plasmonic U-bent Plastic Optical Fiber Probes for Surface Enhanced Raman Scattering Based Biosensing[J]. J. Raman Spectrosc., 2018, 49(10): 1607-1616.

[25]

Meng L, Shang L, Feng S, et al. Fabrication of a Three-dimensional (3D) SERS Fiber Probe and Application of in Situ Detection[J]. Opt. Express., 2022, 30(2): 2353-2363.

[26]

Manoharan H, Kc D, Sai V V R. Highly Stable Plasmonic Nanostructures on a Nickel-Sputtered Glass and Polymeric Optical Fiber Sensors[J]. Plasmonics, 2021, 16(4): 1307-1318.

[27]

Liu Y, Zhou F, Wang H, et al. Au-nanorod-clusters Patterned Optical Fiber SERS Probes Fabricated by Laser-induced Evaporation Self-assembly Method[J]. Opt Express, 2020, 28(5): 6648-6662.

[28]

Chen Z, Xu W, Bai Y, et al. SERS Measurement Using Nanoprobe Tip with Laser-Induced Deposited Nanoparticles and Chemical Coated Nanoparticles[J]. J. Nanoelectron., 2017, 12(3): 201-204.

[29]

Xu Y, Geng Y, Wang L, et al. Femtosecond Laser Ablated Pyramidal Fiber Taper-SERS Probe with Laser-induced Silver Nanostructures[J]. J. Phys. D, 2018, 51(28): 285104

[30]

Long Y, Li H, Wang W, et al. Ultrasensitive Detection of Cr (VI) Using a Novel SERS Optical Fiber Probe Modified by Dual-functional Methimazole[J]. J. Alloy Compd., 2022, 910: 164916.

[31]

Tian Q, Cao S, He G, et al. Plasmonic Au-Ag Alloy Nanostars Based High Sensitivity Surface Enhanced Raman Spectroscopy Fiber Probes[J]. J. Alloy Compd., 2022, 900: 163345.

[32]

He G, Han X, Cao S, et al. Long Spiky Au-Ag Nanostar Based Fiber Probe for Surface Enhanced Raman Spectroscopy[J]. Materials, 2022, 15(4): 1498

[33]

Yu M, Tian Q, He G, et al. Surface-Enhanced Raman Scattering Fiber Probe Based on Silver Nanocubes[J]. Adv. Fiber Mater., 2021, 3(6): 349-358.

[34]

Li L, Deng S, Wang H, et al. A SERS Fiber Probe Fabricated by Layer-by-layer Assembly of Silver Sphere Nanoparticles and Nanorods with a Greatly Enhanced Sensitivity for Remote Sensing[J]. Nanotechnology, 2019, 30(25): 255503

[35]

Cao J, Zhao D, Mao Q. A Highly Reproducible and Sensitive Fiber SERS Probe Fabricated by Direct Synthesis of Closely Packed AgNPs on the Silanized Fiber Taper[J]. Analyst., 2017, 142(4): 596-602.

[36]

Gu H X, Li D W, Xue L, et al. A Portable Microcolumn Based on Silver Nanoparticle Functionalized Glass Fibers and Its SERS Application[J]. Analyst., 2015, 140(23): 7934-7938.

[37]

Van X T, Trinh L T, Van P H, et al. Tunable Plasmonic Properties of Bimetallic Au-Cu Nanorods for SERS-Based Sensing Application[J]. J. Electron. Mater., 2022, 51(4): 1857-1865.

[38]

Sun Y, Shi L, Mi L, et al. Recent Progress of SERS Optical Nanosensors for miRNA Analysis[J]. J. Mater. Chem. B, 2020, 8(24): 5178-583.

[39]

Qiao Z, Yao Y, Song S, et al. Gold Nanorods with Surface Chargeswitchable Activities for Enhanced Photothermal Killing of Bacteria and Eradication of Biofilm[J]. J. Mater. Chem. B, 2020, 8(15): 3138-3149.

[40]

Huang Z, Lei X, Liu Y, et al. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface Enhanced Raman Scattering Application[J]. ACS Appl. Mater. Interfaces, 2015, 7(31): 17247-17254.

[41]

Walsh M J, Tong W, Katz B H, et al. A Mechanism for Symmetry Breaking and Shape Control in Single-crystal Gold Nanorods[J]. Acc. Chem. Res., 2017, 50(12): 2925-2935.

[42]

Moreau L M, Jones M R, Roth E W, et al. The Role of Trace Ag in the Synthesis of Au Nanorods[J]. Nanoscale, 2019, 11(24): 11744-11754.

[43]

Pu H, Xu F, Wei Q, et al. Shell Thickness-dependent Au@ Ag Nanorods Aggregates for Rapid Detection of Thiram[J]. J. Food Meas. Charact., 2022, 16(2): 1448-1458.

[44]

Haidar I, Day A, Decorse P, et al. Tailoring the Shape of Anisotropic Core-shell Au-Ag Nanoparticles in Dimethyl Sulfoxide[J]. Chem. Mater., 2019, 31(8): 2741-2749.

[45]

Han E, Li X, Zhang Y, et al. Electrochemical Immunosensor Based on Self-assembled Gold Nanorods for Label-free and Sensitive Determination of Staphylococcus Aureus[J]. Anal. Bioanal. Chem., 2020, 611: 113 982.

[46]

Chen G Y, Wu X, Codemard C A, et al. Optical Hygrometer Using Light-sheet Skew-ray Probed Multimode Fiber with Polyelectrolyte Coating[J]. Sens. Actuators B Chem., 2019, 296: 126 685.

[47]

Tian Y, Zhang H, Xu L, et al. Self-assembled Monolayers of Bimetallic Au/Ag Nanospheres with Superior Surface-enhanced Raman Scattering Activity for Ultra-sensitive Triphenylmethane Dyes Detection[J]. Opt. Lett., 2018, 43(4): 635-638.

[48]

Wei W, Huang Q. Preparation of Cellophane-based Substrate and Its SERS Performance on the Detection of CV and Acetamiprid[J]. Spectrochimi. Acta, Part A, 2018, 193: 8-13.

[49]

Long Y, Li H, Du Z, et al. Confined Gaussian-distributed Electromagnetic Field of Tin (II) Chloride-sensitized Surface-enhanced Raman Scattering (SERS) Optical Fiber Probe: From Localized Surface Plasmon Resonance (LSPR) to Waveguide Propagation[J]. J. Colloid Interface Sci., 2021, 581: 698-708.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/