Influence of Organic Cations on the Crystal and Electronic Structures of Two-dimensional Lead Iodide Perovskites

Dingjin Du , Xiaoyan Gan , Shun Lu , Wei Zheng , Liling Guo , Hanxing Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 496 -504.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (3) : 496 -504. DOI: 10.1007/s11595-023-2724-2
Advanced Materials

Influence of Organic Cations on the Crystal and Electronic Structures of Two-dimensional Lead Iodide Perovskites

Author information +
History +
PDF

Abstract

The crystal structures and electronic structures (including band gap, project density of states, partial charge density, effective mass and electron localization function) of the 2D lead iodide perovskites hybrids with different organic spacer cations of 4-fluorophenylethanaminium (4F-PEA+), ethanolamine (EA+), thienylethylamine (TEA+) were investigated using first-principles calculations. It was found the higher dipole moment, the stronger the hydrogen bonding between the organic amino and iodide in the inorganic layer, and the larger the [PbI6]4− octahedral distortions in these crystal structure. Further quantifying the degree of the distortions using OctaDist software showed that the distortion of adjacent [PbI6]4− octahedra had a decisive effect on the band gap. Specifically, the greater deviation of Pb-I-Pb bond angles from 180°, together with the larger distortion of multiple [PbI6]4− octahedron resulted in a wider band gap, which was verified by calculated band gap using different DFT methods. The results outlined the relationships of hydrogen bonding, ocathedra distortion and band structure in 2D perovskites, highlighting the importance of the cations on the structural tuning and optoelectronic properties.

Keywords

2D perovskites / density functional theory (DFT) / octahedral distortion / 4F-PEA / EA / TEA

Cite this article

Download citation ▾
Dingjin Du, Xiaoyan Gan, Shun Lu, Wei Zheng, Liling Guo, Hanxing Liu. Influence of Organic Cations on the Crystal and Electronic Structures of Two-dimensional Lead Iodide Perovskites. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(3): 496-504 DOI:10.1007/s11595-023-2724-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties[J]. Inorg. Chem., 2013, 52(15): 9019-9038.

[2]

Stoumpos C C, Cao D H, Clark D J, et al. Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2d Homologous Semiconductors[J]. Chem. Mater., 2016, 28(8): 2852-2867.

[3]

Lee J-H, Bristowe N C, Bristowe P D, et al. Role of Hydrogen-Bonding and Its Interplay with Octahedral Tilting in CH3NH3PbI3[J]. Chem. Commun., 2015, 51(29): 6 434-6 437.

[4]

Cheng B, Li T-Y, Maity P, et al. Extremely Reduced Dielectric Confinement in Two-Dimensional Hybrid Perovskites with Large Polar Organics[J]. Commun. Phys., 2018, 1(1): 80

[5]

Mao L, Stoumpos C C, Kanatzidis M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises[J]. J. Am. Chem. Soc., 141(3): 1171–1190

[6]

Saparov B, Mitzi D B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design[J]. Chem. Rev., 2016, 116(7): 4 558-4596.

[7]

Schmitt T, Bourelle S, Tye N, et al. Control of Crystal Symmetry Breaking with Halogen-Substituted Benzylammonium in Layered Hybrid Metal-Halide Perovskites[J]. J. Am. Chem. Soc., 2020, 142(11): 5060-5067.

[8]

Dammak H, Elleuch S, Feki H, et al. Synthesis, Crystal Structure, Vibrational Spectra, Optical Properties and Theoretical Investigation of a Two-Dimensional Self-Assembled Organic-Inorganic Hybrid Material[J]. Solid. State. Sci., 2016, 61: 1-8.

[9]

Du K, Tu Q, Zhang X, et al. Two-Dimensional Lead (Ii) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity[J]. Inorg. Chem., 2017, 56(15): 9291-9302.

[10]

Kresse G, Furthmüller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Phys. Rev. B, 1996, 54(16): 11169

[11]

Kresse G, Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50.

[12]

Blöchl P E. Projector Augmented-Wave Method[J]. Phys. Rev. B, 1994, 50(24): 17953

[13]

Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method[J]. Phys. Rev. B, 1999, 59(3): 1758

[14]

Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865

[15]

Grimme S, Antony J, Ehrlich S, et al. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu[J]. J. Chem. Phys., 2010, 132(15): 154104

[16]

Grimme S, Ehrlich S, Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory[J]. J. Comput. Chem., 2011, 32(7): 1456-1465.

[17]

Jana M K, Song R, Liu H, et al. Organic-to-Inorganic Structural Chirality Transfer in a 2 d Hybrid Perovskite and Impact on Rashba-Dresselhaus Spin-Orbit Coupling[J]. Nat. Commun., 2020, 11(1): 4699

[18]

Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations[J]. Phys. Rev. B, 1976, 13(12): 5188

[19]

Wang V, Xu N, Liu J-C, et al. Vaspkit: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using Vasp Code[J]. Comput. Phys. Commun., 2021, 267: 108033.

[20]

Momma K, Izumi F. Vesta 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data[J]. J. Appl. Crystallogr., 2011, 44(6): 1272-1276.

[21]

Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 Rev. B.01[M]. CT. Wallingford, Gaussian, Inc., 2016

[22]

Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J. Phys. Chem., 1994, 98(45): 11623-11627.

[23]

Dunning T H Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen[J]. J. Chem. Phys., 1989, 90(2): 1007-1023.

[24]

Jiang T, Min H, Zou R, et al. des[J]. J. Phys. Chem. Lett., 2022, 13(18): 4098-4103.

[25]

Pan H, Zhao X, Gong X, et al. Atomic-Scale Tailoring of Organic Cation of Layered Ruddlesden-Popper Perovskite Compounds[J]. J. Phys. Chem. Lett., 2019, 10(8): 1813-1819.

[26]

Mercier N, Poiroux S, Riou A, et al. Unique Hydrogen Bonding Correlating with a Reduced Band Gap and Phase Transition in the Hybrid Perovskites (HO(CH2)2NH3)2PbX4 (X= I, Br)[J]. Inorg. Chem., 2004, 43(26): 8361-8366.

[27]

Ketkaew R, Tantirungrotechai Y, Harding P, et al. Octadist: A Tool for Calculating Distortion Parameters in Spin Crossover and Coordination Complexes[J]. Dalton. Trans., 2021, 50(3): 1086-1096.

[28]

Michael G. Geometric Control of Manganese Redox State[J]. J. Chem. Soc., Chem. Commun., 1995, 10: 1035-1038.

[29]

Marchivie M, Guionneau P, Létard J-F, et al. Photo-Induced Spin-Transition: The Role of the Iron (Ii) Environment Distortion[J]. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater., 2005, 61(1): 25-28.

[30]

Ren H-S, Ming M-J, Ma J-Y, et al. Theoretical Calculation of Reorganization Energy for Electron Self-Exchange Reaction by Constrained Density Functional Theory and Constrained Equilibrium Thermodynamics[J]. J. Phys. Chem. A, 2013, 117(33): 8017-8025.

[31]

Cortecchia D, Neutzner S, Srimath Kandada A R, et al. Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation[J]. J. Am. Chem. Soc., 2017, 139(1): 39-42.

[32]

Knutson J L, Martin J D, Mitzi D B. Tuning the Band Gap in Hybrid Tin Iodide Perovskite Semiconductors Using Structural Templating[J]. Inorg. Chem., 2005, 44(13): 4699-4705.

[33]

Pedesseau L, Sapori D, Traore B, et al. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors[J]. ACS Nano, 2016, 10(11): 9776-9786.

[34]

Bowers M J, McBride J R, Rosenthal S J. White-Light Emission from Magic-Sized Cadmium Selenide Nanocrystals[J]. J. Am. Chem. Soc., 2005, 127(44): 15378-15379.

[35]

Smith M D, Pedesseau L, Kepenekian M, et al. Decreasing the Electronic Confinement in Layered Perovskites through Intercalation[J]. Chem. Sci., 2017, 8(3): 1960-1968.

[36]

Filippetti A, Mattoni A. Hybrid Perovskites for Photovoltaics: Insights from First Principles[J]. Phys. Rev. B, 2014, 89(12): 125203

[37]

Silvi B, Savin A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions[J]. Nature, 1994, 371(6499): 683-686.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/