Influences of Milling Time and NbC on Microstructure of AlCoCrFeNi2.1 High Entropy Alloy by Mechanical Alloying

Li Li , Hui Jiang , Zhiliang Ni , Kaiming Han , Rui Wang , Haixia Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (2) : 423 -429.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (2) : 423 -429. DOI: 10.1007/s11595-023-2713-5
Metallic Materials

Influences of Milling Time and NbC on Microstructure of AlCoCrFeNi2.1 High Entropy Alloy by Mechanical Alloying

Author information +
History +
PDF

Abstract

AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) and AlCoCrFeNi2.1-xNbC (x=2.5wt%, 5.0wt%, 7.5wt%, and 10wt%) high entropy alloy (HEAs) were prepared by mechanical alloying (MA). The effects of milling time and NbC content on the alloying behavior and grain size of the AlCoCrFeNi2.1 EHEA were investigated. The experimental results show that the AlCoCrFeNi2.1 EHEA primarily consists of order BCC (B2) and face-centered-cubic (FCC) phases, while the AlCoCrFeNi2.1-xNbC (x=2.5wt%, 5.0wt%, 7.5wt%, and 10wt%) HEAs are composed of B2, FCC, and NbC phases. With the increase of milling time, the powder goes through three stages, irregularity, cold welding fracture and spheroidization. The particle size of AlCoCrFeNi2.1 EHEA powder shows a trend of first increasing and then decreasing. Therein, the particle size presents a normal distribution during 0–50 h alloying. With the addition of NbC, the AlCoCrFeNi2.1-xNbC HEAs powders are significantly refined. And the degree of grain refinement gradually increases with the increase of NbC content.

Keywords

eutectic high entropy alloy / mechanical alloying / alloying behavior / grain size

Cite this article

Download citation ▾
Li Li, Hui Jiang, Zhiliang Ni, Kaiming Han, Rui Wang, Haixia Wang. Influences of Milling Time and NbC on Microstructure of AlCoCrFeNi2.1 High Entropy Alloy by Mechanical Alloying. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(2): 423-429 DOI:10.1007/s11595-023-2713-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Lin SJ, et al. Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Adv. Eng. Mater., 2004, 6(5): 299-303.

[2]

Cantor B, Chang ITH, Knight P, et al. Microstructural Development in Equiatomic Multicomponent Alloys[J]. Mater. Sci. Eng. A., 2004, 375–377: 213-218.

[3]

Kilmametov A, Kulagin R, Mazilkin A, et al. High-pressure Torsion Driven Mechanical Alloying of CoCrFeMnNi High Entropy Alloy[J]. Scr. Mater., 2019, 158: 29-33.

[4]

Miracle DB, Senkov ON. A Critical Review of High Entropy Alloys and Related Concepts[J]. Acta Mater., 2017, 122: 448-511.

[5]

Shi Y, Yang B, Xie X, et al. Corrosion of AlCoCrFeNi High-entropy Alloys: Al-content and Potential Scan-rate Dependent Pitting Behavior[J]. Corros. Sci., 2017, 119: 33-45.

[6]

Chuang MH, Tsai MH, Wang WR, et al. Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-entropy Alloys[J]. Acta Mater., 2011, 59(16): 6 308-6 317.

[7]

Lu YP, Dong Y, Guo S, et al. A Promising New Class of High Tem-Perature Alloys: Eutectic High Entropy Alloys[J]. Sci. Rep., 2014, 4(1): 1-5.

[8]

Jiang H, Qiao DX, Lu YP, et al. Direct Solidification of Bulk Ultrafine-microstructure Eutectic High-entropy Alloys with Outstanding Thermal Stability[J]. Scr. Mater., 2019, 165: 145-149.

[9]

Lin X, Wang M, Ren G, et al. Microstructure Evolution and Mechanical Properties of CrFeNixV0.64Ta0.36 Eutectic High-entropy Alloys[J]. Mater. Charact., 2021, 181: 111 449.

[10]

Mukarram M, Mujahid M, Yaqoob K. Design and Development of CoCrFeNiTa Eutectic High Entropy Alloys[J]. J. Mater. Res. Technol., 2021, 10: 1 243-1 249.

[11]

Chen X, Xie W, Zhu J, et al. Influences of Ti Additions on the Microstructure and Tensile Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. Intermetallics, 2021, 128: 107 024.

[12]

Xiong T, Zheng S, Pang J, et al. High-strength and High-ductility Al-CoCrFeNi2.1 Eutectic High-entropy Alloy Achieved via Precipitation Strengthening in a Heterogeneous Structure[J]. Scr. Mater., 2020, 186: 336-340.

[13]

Asoushe MH, Hanzaki AZ, Abedi HR, et al. Thermal Stability, Microstructure and Texture Evolution of Thermomechanical Processed Al-CoCrFeNi2.1 Eutectic High Entropy Alloy[J]. Mater. Sci. Eng. A, 2021, 799: 140 012.

[14]

Gao X, Lu Y, Zhang B, et al. Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi2.1 Eutectic High-entropy Alloy[J]. Acta Mater., 2017, 141: 59-66.

[15]

Bhattacharjee T, Wani IS, Sheikh S, et al. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing[J]. Sci. Rep., 2018, 8(1): 3 276

[16]

Wang T, Komarasamy M, Shukla S, et al. Simultaneous Enhancement of Strength and Ductility in an AlCoCrFeNi2.1 Eutectic High-entropy Alloy via Friction Stir Processing[J]. J. Alloys Compd., 2018, 766: 312-317.

[17]

Dong B, Wang Z, Pan Z, et al. On the Development of Pseudo-eutectic AlCoCrFeNi2.1 High Entropy Alloy Using Powder-bed Arc Additive Manufacturing (PAAM) Process[J]. Mater. Sci. Eng. A, 2021, 802: 140 639.

[18]

John R, Karati A, Joseph J, et al. Microstructure and Mechanical Properties of a High Entropy Alloy with a Eutectic Composition (Al-CoCrFeNi2.1) Synthesized by Mechanical Alloying and Spark Plasma Sintering[J]. J. Alloys Compd., 2020, 835: 155 424.

[19]

Wu H, Huang S, Zhao C, et al. Microstructures and Mechanical Properties of in-situ FeCrNiCu High Entropy Alloy Matrix Composites Reinforced with NbC Particles[J]. Intermetallics, 2020, 127: 106 983.

[20]

Abbasi E, Dehghani K. Effect of NbC Addition on the Microstructure and Mechanical Properties of CoCrFeMnNi High Entropy Alloys During Homogenisation[J]. Mater. Sci. Eng. A, 2019, 753: 224-231.

[21]

Ma SG, Zhang Y. Effect of Nb Addition on the Microstructure and Properties of AlCoCrFeNi High-entropy Alloy[J]. Mater. Sci. Eng. A, 2012, 532: 480-486.

[22]

Chen YL, Hu YH, Hsieh CA, et al. Competition between Elements during Mechanical Alloying in an Octonary Multi-principal-element Alloy System[J]. J. Alloys Compd., 2009, 481(1–2): 768-775.

[23]

Li X, Feng Y, Liu B, et al. Influence of NbC Particles on Microstructure and Mechanical Properties of AlCoCrFeNi High-entropy Alloy Coatings Prepared by Laser Cladding[J]. J. Alloys Compd., 2019, 788: 485-494.

[24]

He JH, Jin L, Wang FH, et al. Mechanical Properties of Mg-8Gd-3Y-0.5Zr Alloy with Bimodal Grain Size Distributions[J]. J. Magnesium Alloys, 2017, 5(4): 423-429.

[25]

Schuh B, Pippan R, Hohenwarter A. Tailoring Bimodal Grain Size Structures in Nanocrystalline Compositionally Complex Alloys to Improve ductility[J]. Mater. Sci. Eng. A, 2019, 748: 379-385.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/