The Fabrication and SERS Performance of Multi-layer Hollow Au-Ag Alloy Nano Urchins Structure-based SERS Fiber Probe

Zhenbang Hao , Qihang Tian , Shiyi Cao , Xiaoyu Han , Jihong Zhang , Jun Xie , Xiujian Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (2) : 274 -279.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (2) : 274 -279. DOI: 10.1007/s11595-023-2693-5
Advanced Materials

The Fabrication and SERS Performance of Multi-layer Hollow Au-Ag Alloy Nano Urchins Structure-based SERS Fiber Probe

Author information +
History +
PDF

Abstract

Novel hollow Au Ag alloy nano urchins were synthesized via Ag seeds growth method, and self-assembly coated on the wall and end-tip of silica fiber for fiber probe fabrication. The nano urchins homogeneously distributed on fiber surface because of fiber silanization. The sizes and tip sharpness of the nano-urchins could be controlled by Ag seeds. The elements distribution analysis indicated there was high Ag content in tip-top for better surface enhance Raman scattering performance. The detectable concentration could be as low as 10−8 M using crystal violet molecules as analyte. Moreover, the fiber probes were stable in air, due to Au in the alloy. This fiber probe could be used for low content single molecular analysis.

Keywords

surface enhanced raman spectroscopy / hollow Au-Ag alloy / nano urchins / fiber probe

Cite this article

Download citation ▾
Zhenbang Hao, Qihang Tian, Shiyi Cao, Xiaoyu Han, Jihong Zhang, Jun Xie, Xiujian Zhao. The Fabrication and SERS Performance of Multi-layer Hollow Au-Ag Alloy Nano Urchins Structure-based SERS Fiber Probe. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(2): 274-279 DOI:10.1007/s11595-023-2693-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mehmet Yilmaz Esra, et al. Nanostructured Organic Semiconductor Films for Molecular Detection with Surface-enhanced Raman Spectroscopy [J]. Nature Mater., 2017, 16(9): 918

[2]

Lee PC, Meisel D. Adsorption and Surface-enhanced Raman of Dyes on Silver and Gold Sols[J]. J. Phys. Chem. B., 1982, 86(17): 3 391-3 395.

[3]

Wiley B, Sun Y, Xia Y. Synthesis of silver Nanostructures with Controlled Shapes and Properties [J]. Accounts Chem. Res., 2007, 40(10): 1 067-1 076.

[4]

Zhuo X, Henriksen-Lacey M, Aberasturi D, et al. Shielded Silver Nanorods for Bioapplications[J]. Chem Mater., 2020, 32(13): 5 879-5 889.

[5]

Mclellan JM, Li ZY, Siekkinen AR, et al. The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization[J]. Nano Lett., 2007, 7(4): 1 013-1 017.

[6]

Guo Z, Zhao Y, Sun S, et al. Direct electroplating of Ag Nanowires using Superionic Conductors[J]. Nanoscale Horiz., 2019, 5(1): 89-94.

[7]

Niu W, Zheng S, Wang D, et al. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals[J]. J. Am. Chem. Soc., 2009, 131(2): 697-703.

[8]

Catherine J, Murphy Tapan K, et al. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications[J]. J. Phys. Chem. B., 2005, 109(29): 13 857-13 870.

[9]

Gole A, Murphy CJ. Seed-mediated Synthesis of Gold nanorods: Role of the Size and Nature of the Seed[J]. Chem. Mater., 2004, 16(19): 3 633-3 640.

[10]

Xie J, Zhang Q, Lee JY, et al. The Synthesis of SERS-active Gold Nanoflower Tags for in vivo Applications[J]. Acs Nano, 2008, 2(12): 2 473-2 480.

[11]

Millstone JE, Park S, Shuford KL, et al. Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms[J]. J. Am. Chem. Soc., 2005, 127(15): 5 312-5 313.

[12]

Liu Z, Yang Z, et al. Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy from Hollow Au-Ag Alloy Nanourchins[J]. Adv. Mater., 2014, 26(15): 2 431-2 439.

[13]

Liu Z, Liang C, Zhang L, et al. Sub-100 nm Hollow Au-Ag Alloy Urchin-shaped Nanostructure with Ultrahigh Density of Nanotips for Photothermal Cancer Therapy[J]. Biomaterials, 2014, 35(13): 4 099-4 107.

[14]

Joseph D, Baskaran R, Yang SG, et al. Multifunctional Spiky Branched Gold-silver Nanostars with Near-infrared and Short-wavelength Infrared Localized Surface Plasmon Resonances[J]. J. Colloid Interf. Sci., 2019, 542: 308-316.

[15]

Joseph D, Huh YS, Han YK. A top-down Chemical Approach to Tuning the Morphology and Plasmon Resonance of Spiky Nanostars for Enriched SERS-based Chemical Sensing[J]. Sens. Actuators B Chem., 2019, 1288: 120-126.

[16]

Zhang W, Liu J, Niu W, et al. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering[J]. Acs. Appl. Mater. Inter., 2018, 10(17): 14 850-14 856.

[17]

Su Y, Xu S, Zhang J, et al. Plasmon Near-Field Coupling of Bimetallic Nanostars and Hierarchical Bimetallic SERS “Hot Field”: Toward Ultrasensitive Simultaneous Detection of Multiple Cardiorenal Syndrome Biomarkers[J]. Anal. Chem., 2018, 91(1): 864-872.

[18]

Perrault SD, Chan W. Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50–200 nm[J]. J. Am. Chem. Soc., 2009, 131(47): 17 042-17 043.

[19]

Canamares MV, Chenal C, Birke RL, et al. DFT, SERS, and Single-molecule SERS of Crystal Violet[J]. J. Phys. Chem. C., 2008, 112(51): 20 295-20 300.

[20]

Ma L, Huang Y, Hou M, et al. Silver Nanorods Wrapped with Ultrathin Al2O3 Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability[J]. Sci Rep., 2015, 5: 12 890.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/