The Structure and Properties of Multi-cations Doped KNN-based Piezoelectric Ceramics

Xiaoyi Gao , Huajun Sun , Hua Hao , Chuanbin Wang , Qiang Shen , Lianmeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (2) : 261 -266.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (2) : 261 -266. DOI: 10.1007/s11595-023-2691-7
Advanced Materials

The Structure and Properties of Multi-cations Doped KNN-based Piezoelectric Ceramics

Author information +
History +
PDF

Abstract

The piezoelectric strain of K0.5Na0.5NbO3-based lead-free ceramic at different temperatures was studied. The Rayleigh analysis shows that the intrinsic and extrinsic contributions are increased at temperature from 173 to 298 K. In addition, a monoclinic phase structure was observed at 83 K. The results of phase field simulation show that the temperature dependent microstructure evolution is a function of the local structure size. This work contributes to understanding the structure and properties relationship of the multi-cations doped KNN-based piezoelectric ceramics as a function of temperature.

Keywords

microstructure evolution / phase structure / monoclinic phase / strain behavior

Cite this article

Download citation ▾
Xiaoyi Gao, Huajun Sun, Hua Hao, Chuanbin Wang, Qiang Shen, Lianmeng Zhang. The Structure and Properties of Multi-cations Doped KNN-based Piezoelectric Ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(2): 261-266 DOI:10.1007/s11595-023-2691-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang S, Li F, Jiang X, et al. Advantages and Challenges of Relax-or-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers-A review[J]. Prog. Mater. Sci., 2015, 68: 1-66.

[2]

Wu J, Xiao D, Zhu J. Potassium-sodium Niobate Lead-free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries[J]. Chem. Rev., 2015, 115: 2 559-2 595.

[3]

Damjanovic D. Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics[J]. J. Am. Ceram. Soc., 2005, 88: 2 663-2 676.

[4]

Li J, Wang K, Zhu F, et al. (K,Na)NbO3-based Lead-free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges[J]. J. Am. Ceram. Soc., 2013, 6: 3 677-3 696.

[5]

Trolier-McKinstry S, Zhang S, Bell A, et al. High-performance Piezoelectric Crystals, Ceramics, and Films[J]. Annu. Rev. Mater. Res., 2018, 4: 191-217.

[6]

Rödel J, Webber K, Dittmer R, et al. Transferring Lead-free Piezoelectric Ceramics into Application[J]. J, Eur, Ceram, Soc., 2015, 35: 1659-1681.

[7]

Shrout T, Zhang S. Lead-free Piezoelectric Ceramics: Alternatives for PZT[J]?. J. Electroceramics, 2007, 19: 113-126.

[8]

Zheng T, Wu J, Xiao D, et al. Recent Development in Lead-free Perovskite Piezoelectric Bulk Materials[J]. Prog. Mater. Sci., 2018, 98: 552-624.

[9]

Tao H, Wu H, Liu Y, et al. Ultrahigh Performance in Lead-free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence[J]. J. Am. Chem. Soc., 2019, 35: 13 987-13 994.

[10]

Sharma J, Kumar K, Sharma A. Structural and Dielectric Properties of Pure Potassium Sodium Niobate (KNN) Lead Free Ceramics[J]. Solid State Commun., 2021, 11345: 334-335.

[11]

Li P, Zhai J, Shen B, et al. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3 Based Lead-free Ceramics[J]. Adv. Mater., 2018, 30: 1 705 171.

[12]

Zheng T, Yu Y, Lei H, et al. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3 Based Lead-free Ceramics[J]. Adv. Mater., 2021, 3: 210 915.

[13]

Lv X, Wu J, Zhu J, et al. Temperature Stability and Electrical Properties in La-doped KNN-based Ceramics[J]. J. Am. Ceram. Soc., 2018, 101: 4 084-4 094.

[14]

Yang W, Li P, Li F, et al. Enhanced Piezoelectric Performance and Thermal Stability of Alkali Niobate-based Ceramics[J]. Ceram. Int., 2019, 45: 22 275-22 280.

[15]

Zhang S, Xia R, Shrout T. Piezoelectric Properties in Perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 Lead-free Ceramics[J]. J. Appl. Phys., 2006, 100: 1 040 108.

[16]

Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric Properties of Li- and Ta-modified (K0.5Na0.5)NbO3 Ceramics[J]. Appl. Phys. Lett., 2005, 87: 18 205.

[17]

Wang X, Wu J, Xiao D, et al. Large d33 in (K,Na)(Nb,Ta,Sb)O3-(Bi,Na,K)ZrO3 Lead-free Ceramics[J]. J. Mater. Chem. A, 2014, 2: 4 122-4 126.

[18]

Gao X, Cheng Z, Chen Z, et al. The Mechanism for the Enhanced Piezoelectricity in Multi-elements Doped (K,Na)NbO3 Ceramics[J]. Nat. Commun., 2021, 12: 881.

[19]

Zhao L, Chen K, Ma J, et al. Giant Electrostrictive Coefficient of KNN-based Lead-free Ferroelectric[J]. Ceram. Int., 2022, 48: 28 622-28 628.

[20]

Lv X, Wu J, Zhao C, et al. Enhancing Temperature Stability in Potassium-sodium Niobate Ceramics Through Phase Boundary and Composition Design[J]. J. Eur. Ceram. Soc., 2018, 39: 305-315.

[21]

Chen L. Phase-field Models for Microstructure Evolution[J]. Annu. Rev. Mater. Sci., 2022, 32: 113-140.

[22]

Uršič H, Benčan A, Škarabot M, et al. Dielectric, Ferroelectric, Piezoelectric, and Electrostrictive Properties of K0.5Na0.5NbO3 Single Crystals[J]. J. Appl. Phys., 2010, 107: 033 705.

[23]

Ishizawa N, Wang J, Sakaura T, et al. Structural Evolution of Na0.5K0.5NbO3 at High Temperatures[J]. J. Solid State Chem., 2010, 183: 2 731-2 738.

[24]

Wang B, Chen H, Wang J, et al. Ferroelectric Domain Structures and Temperature-misfit Strain Phase Diagrams of K1−xNaxNbO3 Thin Films: A Phase-field Study[J]. Appl. Phys. Lett., 2019, 115: 092 902.

[25]

Trodahl H, Klein N, Damjanovic D, et al. Raman Spectroscopy of (K,Na)NbO3 and (K,Na)1−xLixNbO3[J]. Appl. Phys. Lett., 2008, 93: 262 901.

[26]

Takenaka H, Grinberg I, Liu S, et al. Slush-like Polar Structures in Single-crystal Relaxors[J]. Nature, 2017, 546: 391-395.

[27]

Tang H, Zhang S, Feng Y, et al. Piezoelectric Property and Strain Behavior of Pb(Yb0.5Nb0.5)O3-PbHfO3-PbTiO3 Polycrystalline Ceramics[J]. J. Am. Ceram. Soc., 2013, 96: 2 857-2 863.

[28]

Li F, Zhang S, Xu Z, et al. Composition and Phase Dependence of the Intrinsic and Extrinsic Piezoelectric Activity of Domain Engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 Crystals[J]. J. Appl. Phys., 2010, 108: 034 106.

[29]

Damjanovic D. Logarithmic Frequency Dependence of the Piezoelectric Effect due to Pinning of Ferroelectric-Ferroelastic Domain Walls[J]. Phys. Rev. B, 1997, 55: R649-52.

[30]

Gao X, Dong N, Xia F, et al. Impact of Phase Structure on Piezoelectric Properties of Textured Lead-free Ceramics[J]. Crystals, 2020, 10: 367.

[31]

Hoffmann M, Hammer M, Endriss A, et al. Correlation between Microstructure, Strain Behavior, and Acoustic Emission of Soft PZT Ceramics[J]. Acta Mater., 2001, 49: 1 301-1 310.

[32]

Cross L. Relaxor Ferroelectrics[J]. Ferroelectrics, 1987, 76: 241-276.

[33]

Haun M, Furman E, Jang J. Thermodynamic Theory of the Lead Zirconate Titanate Solid-solution System, Part I-V: Theoretical Calculations[J]. Ferroelectrics, 1989, 99: 13-86.

[34]

Bell A. Calculations of Dielectric Properties from the Super Paraelectric Model of Relaxors[J]. J. Phys.: Condens. Matter, 1993, 5: 8 733-8 792.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/