First-principles Study of Electronic Structural and Mechanical Properties of Mg xLa(x=1, 2, 3) Compounds under Pressure

Yan Li , Yuhong Zhao , Xiaomin Yang , Jinzhong Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 192 -198.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 192 -198. DOI: 10.1007/s11595-023-2681-0
Metallic Materials

First-principles Study of Electronic Structural and Mechanical Properties of Mg xLa(x=1, 2, 3) Compounds under Pressure

Author information +
History +
PDF

Abstract

The effects of pressure on structural, elastic and electronic properties of Mg xLa (x=1, 2, 3) compounds are investigated by using CASTEP program based on the density functional theory. The calculated equilibrium lattice parameters at zero pressure agree well with available experimental and theoretical values. The calculated DOS show that the structure of these compounds remains mechanically stable and structural phase transformation is not induced with increasing pressure from 0 to 30 GPa, and their structural stability increases with pressure. The ductility of MgLa can be improved by increasing pressure, which is the same as Mg2La in 0–20 GPa, while brittle behavior turns into ductile behavior in 0–5 GPa for Mg3La. The resistance to volume deformation of Mg xLa (x=1, 2, 3) compounds can be improved as the pressure increases. The shear deformation resistance and elastic stiffness of Mg3La can be enhanced by rising pressure, but MgLa and Mg2La increase first and then decrease when pressure is up to 25 GPa. In addition, the three compounds exhibit the elastic anisotropy with pressure.

Keywords

Mg−La alloys / elastic properties / electronic structure / first-principles

Cite this article

Download citation ▾
Yan Li, Yuhong Zhao, Xiaomin Yang, Jinzhong Tian. First-principles Study of Electronic Structural and Mechanical Properties of Mg xLa(x=1, 2, 3) Compounds under Pressure. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(1): 192-198 DOI:10.1007/s11595-023-2681-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mordike B L, Ebert T. Magnesium: Properties-applications Potential[J]. Mater. Sci. Eng., A, 2001, 302(1): 37-45.

[2]

Potzies C, Kainer K U. Fatigue of Magnesium Alloys[J]. Adv. Eng. Mater., 2004, 6(5): 281-289.

[3]

Kulekci M K. Magnesium and Its Alloys Applications in Automotive Industry[J]. Int. J. Adv. Manuf. Technol., 2009, 39(9–10): 851-865.

[4]

Mordike B L. Creep-Resistant Magnesium Alloys[J]. Mater. Sci. Eng. A, 2002, 324(1): 103-112.

[5]

Agnew S R, Nie J F. Preface to the Viewpoint Set on: The Current State of Magnesium Alloy Science and Technology[J]. Scr. Mater., 2010, 63(7): 671-673.

[6]

Fan J P, Fang L L, Xu B S. Effect of Trace Element La on Microstructure and Properties of Mg−8Al−4Sr−1Y Alloy[J]. Trans. Mater. Heat Treat., 2015, 36(3): 125-129.

[7]

Liu W J, Cao F H, Chang L R, et al. Effect of Rare Earth Element Ce and La on Corrosion Behavior of AM60 Magnesium Alloy[J]. Corros. Sci., 2009, 51(6): 1 334-1 343.

[8]

Wei S H, Chen Y G, Tang Y B, et al. Compressive Creep Behavior of Mg−Sn−La Alloys[J]. Mater. Sci. Eng. A, 2009, 508(1): 59-63.

[9]

Zhang X D, Wei J J. Elastic, Lattice Dynamical, Thermal Stabilities and Thermodynamic Properties of BiF3-type Mg3RE Compounds from First-Principles Calculations[J]. Alloys Compd., 2016, 663: 565-573.

[10]

Chen Q, Huang Z W, Zhao Z D, et al. Thermal Stabilities, Elastic Properties and Electronic Structures of B2-MgRE (RE = Sc, Y, La) by First-Principles Calculations[J]. Comput. Mater. Sci., 2013, 67: 196-202.

[11]

Ganeshan S, Shang S L, Zhang H, et al. Elastic Constants of Binary Mg Compounds from First-Principles Calculations[J]. Intermetallics, 2009, 17(5): 313-318.

[12]

Perdew J P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas[J]. Phys. Rev. B, 1986, 33(12): 8 822-8 824.

[13]

Shi D M, Wen B, Melnik R. First-Principles Studies of Al−Ni Intermetallic Compounds[J]. J. Solid State Chem., 2009, 182(10): 2 664-2 669.

[14]

Laasonen K, Pasquarello A, Car R, et al. Car-Parrinellomolecular Dynamics with Vanderbilt Ultrasoft Pseudopotentials[J]. Phys. Rev. B, 1993, 47: 10 142.

[15]

Pack J D, Monkhors H J. Special Points for Brillouin-zone Integrations[J]. Phys. Rev. B, 1977, 16: 1 748-1 749.

[16]

Perdew J P, Burke K, Ernzerh M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3 865-3 868.

[17]

Fischer T H, Almlof J. General Methods for Geometry and Wave Function Optimization[J]. J. Phys. Chem., 1992, 96(24): 9 768-9 774.

[18]

Iandelli A, Palenzona A. Atomic Size of Rare Earths in Intermetallic Compounds. MX Compounds of CsCl Type[J]. J. Less-Common Met., 1965, 9(1): 1-6.

[19]

Giovannin M, Marazza R, Saccone A, et al. Isothermal Section from 50 at% to 75 at% Mg of the Ternary System Y-La-Mg[J]. J. Alloys Compd., 1994, 203: 177-180.

[20]

Yang F, Wang J W, Ke J L, et al. Elastic Properties and Electronic Structures of Mg−Ce Intermetallic Compounds from First-Principles Calculations[J]. Phys. Status Solid B, 2011, 248(9): 2 097-2 102.

[21]

Ouyang Y, Tao X M, Chen H M, et al. First-Principles Calculations of Mechanical and Thermodynamic Properties of the Laves-MgRE (RE = La, Ce, Pr, Nd, Pm, Sm, Gd)[J]. Comput. Mater. Sci., 2010, 47(2): 297-301.

[22]

Hong T, Watsonyang T J, Freeman A J, et al. Crystal Structure, Phase Stability, and Electronic Structure of Ti−Al Intermetallics: TiAl3[J]. Phys. Rev. B, 1990, 41(18): 12 462

[23]

Wrobel J, Hector L G, Wolf W, et al. Thermodynamic and Mechanical Properties of Lanthanum-Magnesium Phases from Density Functional Theory[J]. J. Alloys Compd., 2012, 512(1): 296-310.

[24]

Grimvall G. Thermophysical Properties of Materials[M], 1999 North Holland: Elsevier.

[25]

Hill R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proc. Phys. Soc. A, 1952, 65(5): 349-354.

[26]

Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle[J]. Z. Angew. Math. Mech, 1929, 9(1): 49-58.

[27]

Pugh S F. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals[J]. Philos. Mag., 1954, 45: 823-843.

[28]

Vaitheeswaran G, Kanchana V, Kumar R S, et al. High-Pressure Structural, Elastic, and Electronic Properties of the Scintillator Host Material KMgF3[J]. Phys. Rev. B, 2007, 76(1): 014 107

[29]

Gao L, Zhou J, Sun Z M, et al. Electronic Origin of the Anomalous Solid Solution Hardening of Y and Gd in Mg:A First-Principles Study[J]. Chin. Sci. Bull., 2011, 56(10): 1 038-1 042.

[30]

Tvergaard V, Hutchinson J W. Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy[J]. J. Am. Ceram. Soc., 2010, 71(3): 157-166.

[31]

Ranganathan S I, Ostoja-Starzewski M. Universal Elastic Anisotropy Index[J]. Phys. Rev. Lett., 2008, 101: 055 504.

[32]

Nye J F. Physical Properties of Crystals[M], 1985 Oxford: Oxford University Press.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/