Effect of Polyaniline/manganese Dioxide Composite on the Thermoelectric Effect of Cement-based Materials

Tao Ji , Xiao Liao , Yan He , Shiping Zhang , Xiaoying Zhang , Xiong Zhang , Weihua Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 109 -116.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 109 -116. DOI: 10.1007/s11595-023-2673-0
Cementitious Materials

Effect of Polyaniline/manganese Dioxide Composite on the Thermoelectric Effect of Cement-based Materials

Author information +
History +
PDF

Abstract

To enhance the thermoelectric effect of cement-based materials, conductive polyaniline (PANI) modified MnO2 powder was synthesized and used as a thermoelectric component in the cement composites. The nanostructured PANI was deposited on the surface of the nanorod-shaped α-MnO2 particle and the weight ratio of PANI to MnO2 was 22.3:77.7 in the composite. The synthesized PANI/MnO2 composite was nanostructured according to the SEM image. The test results of the thermoelectric properties proved that the PANI/MnO2 composite was effective as the Seebeck coefficient and electrical conductivity values of the cement composites with PANI/MnO2 inside were 3–4 orders of magnitude higher than those of pure cement paste and the thermal conductivity values of these cement samples were similar. The obtained maximum figure of merit (ZT) value (2.75×10−3) was much larger than that of conductive materials reinforced cement-based composites. The thermoelectric effect of cement composites is mainly enhanced by the increased Seebeck coefficient and electrical conductivity in this work.

Keywords

PANI/MnO2 composite / cement composites / thermoelectric effect / Seebeck coefficient / electrical conductivity

Cite this article

Download citation ▾
Tao Ji, Xiao Liao, Yan He, Shiping Zhang, Xiaoying Zhang, Xiong Zhang, Weihua Li. Effect of Polyaniline/manganese Dioxide Composite on the Thermoelectric Effect of Cement-based Materials. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(1): 109-116 DOI:10.1007/s11595-023-2673-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han B, Qiao G, Jiang H. Piezoresistive Response Extraction for Smart Cement-Based Composites/Sensors[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2012, 27: 754-757.

[2]

Chen B, Liu J Y. Damage in Carbon Fiber-Reinforced Concrete, Monitored by both Electrical Resistance Measurement and Acoustic Emission Analysis[J]. Constr. Build. Mater., 2008, 22(11): 2 196-2 201.

[3]

Chen B, Liu J Y, Wu K R. Electrical Response of Carbon Fiber Reinforced Cementitious Composites to Monotonic and Cyclic Loading[J]. Cem. Concr. Res., 2005, 35(11): 2 183-2 191.

[4]

Chung D D L. Electrically Conductive Cement-Based Materials[J]. Adv. Cem. Res., 2004, 16(4): 167-176.

[5]

Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-Based Composites[J]. Cem. Concr. Compos., 2004, 26(4): 291-297.

[6]

Dai Y, Sun M, Liu C, et al. Electromagnetic Wave Absorbing Characteristics of Carbon Black Cement-Based Composites[J]. Cement Concr. Compos., 2010, 32(7): 508-513.

[7]

Guan H T, Liu S H, Duan Y P, et al. Cement Based Electromagnetic Shielding and Absorbing Building Materials[J]. Cement Concr. Compos., 2006, 28(5): 468-474.

[8]

Chung D D L. Cement-Based Electronics[J]. J. Electroceram., 2001, 6(1): 75-88.

[9]

Zhu J, Tong X, Niu S, et al. Effects of Magnetization on Thermoelectric Transport Properties of CoSb3 Material[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2021, 36: 353-357.

[10]

Wang Z, Wang Z, Ning M, et al. Electro-Thermal Properties and Seebeck Effect of Conductive Mortar and Its Use in Selfheating and Self-Sensing System[J]. Ceram. Int., 2017, 43(12): 8 685-8 693.

[11]

Wen S, Chung D D L. Seebeck Effect in Carbon Fiber Reinforced Cement[J]. Cem. Concr. Res., 1999, 29(12): 1 989-1 993.

[12]

Wen S, Chung D D L. Seebeck Effect in Steel Fiber Reinforced Cement[J]. Cem. Concr. Res., 2000, 30(4): 661-664.

[13]

Sun M, Li Z, Mao Q, et al. Thermoelectric Percolation Phenomenon in Carbon Fiber-Reinforced Concrete[J]. Cem. Concr. Res., 1998, 28(12): 1 707-1 712.

[14]

Wen S, Chung D D L. Enhancing the Seebeck Effect in Carbon Fiber Reinforced Cement by Using Intercalated Carbon Fibers[J]. Cem. Concr. Res., 2000, 30(8): 1 295-1 298.

[15]

Demirel B, Yazicioglu S. Thermoelectric Behavior of Carbon Fiber Reinforced Lightweight Concrete with Mineral Admixtures[J]. N. Carbon Mater., 2008, 23(1): 21-24.

[16]

Wei J, Zhang Q, Zhao L, et al. Enhanced Thermoelectric Properties of Carbon Fiber Reinforced Cement Composites[J]. Ceram. Int., 2016, 42(10): 11 568-11 573.

[17]

Zuo J, Yao W, Liu X, et al. Sensing Properties of Carbon Nanotube-carbon Fiber/Cement Nanocomposites[J]. J. Test. Eval., 2012, 40(5): 838-843.

[18]

Tzounis L, Liebscher M, Fuge R, et al. P- and N-type Thermoelectric Cement Composites with CVD Grown P- and N-doped Carbon Nanotubes: Demonstration of a Structural Thermoelectric Generator[J]. Energ. Buildings, 2019, 191: 151-163.

[19]

Wei J, Fan Y, Zhao L, et al. Thermoelectric Properties of Carbon Nanotube Reinforced Cement-Based Composites Fabricated by Compression Shear[J]. Ceram. Int., 2018, 44: 5 829-5 833.

[20]

Ghosh S, Harish S, Rocky K A, et al. Graphene Enhanced Thermoelectric Properties of Cement Based Composites for Building Energy Harvesting[J]. Energ. Buildings, 2019, 202: 109 419.

[21]

Ghosh S, Harish S, Ohtaki M, et al. Enhanced Figure of Merit of Cement Composites with Graphene and ZnO Nanoinclusions for Efficient Energy Harvesting in Buildings[J]. Energy, 2020, 198: 117 396.

[22]

Wei J, Zhao L, Zhang Q, et al. Enhanced Thermoelectric Properties of Cement-Based Composites with Expanded Graphite for Climate Adaptation and Large-scale Energy Harvesting[J]. Energ. Buildings, 2018, 159: 66-74.

[23]

Yao W, Xia Q. Preparation and Thermoelectric Properties of Bismuth Telluride/Carbon Fiber Reinforced Cement Composites[J]. Gongneng Cailiao, 2014, 45: 15 134-15 137. (in chinese)

[24]

Wei J, Hao L, He G, et al. Thermoelectric Power of Carbon Fiber Reinforced Cement Composites Enhanced by Ca3Co4O9[J]. Appl. Mech. Mater., 2013, 320: 354-357.

[25]

Wei J, Hao L, He G, et al. Enhanced Thermoelectric Effect of Carbon Fiber Reinforced Cement Composites by Metallic Oxide/Cement Interface[J]. Ceram. Int., 2014, 40: 8 261-8 263.

[26]

Ghaharia S, Ghafaria E, Lu N. Effect of ZnO Nanoparticles on Thermoelectric Properties of Cement Composite for Waste Heat Harvesting[J]. Constr. Build. Mater., 2017, 146: 755-763.

[27]

Ji T, Zhang X, Li W H. Enhanced Thermoelectric Effect of Cement Composite by Addition of Metallic Oxide Nanopowders for Energy Harvesting in Buildings[J]. Constr. Build. Mater., 2016, 115: 576-581.

[28]

Ji T, Zhang X, Zhang X, et al. Effect of Manganese Dioxide Nanorods on the Thermoelectric Properties of Cement Composites[J]. J. Mater. Civ. Eng., 2018, 30: 04 018 224.

[29]

Hutagalung S D, Sahrol N H, Ahmad Z A, et al. Effect of MnO2 Additive on the Dielectric and Electromagnetic Interference Shielding Properties of Sintered Cement-Based Ceramics[J]. Ceram. Int., 2012, 38(1): 671-678.

[30]

Ghafari E, Ghahari S A, Feng Y, et al. Effect of Zinc Oxide and Al-Zinc Oxide Nanoparticles on the Rheological Properties of Cement Paste[J]. Compos. Part B: Eng., 2016, 105: 160-166.

[31]

Pichanusakorn P, Bandaru P. Nanostructured Thermoelectrics[J]. Mat. Sci. Eeg. R., 2010, 67: 19-63.

[32]

Lan Y, Minnich A J, Chen G, et al. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach[J]. Adv. Funct. Mater., 2010, 20(3): 357-376.

[33]

Hicks L D, Dresselhaus M S. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit[J]. Phys. Rev. B, 1993, 47(19): 12 727-12 731.

[34]

Tong T, Fu D, Levander A X, et al. Suppression of Thermal Conductivity in Inx-Ga1−xN Alloys by Nanometer-Scale Disorder[J]. Appl. Phys. Lett., 2013, 102(12): 121 906

[35]

Walia S, Balendhran S, Nili H, et al. Transition Metal Oxides-Thermoelectric Properties[J]. Prog. Mater. Sci., 2013, 58: 1 443-1 489.

[36]

Feng Y, Jiang X, Ghafari E, et al. Metal Oxides for Thermoelectric Power Generation and Beyond[J]. Adv. Compos. Hybrid Mater., 2017, 1(1): 1-13.

[37]

Preisler E. Semiconductor Properties of Manganese Dioxide[J]. J. Appl. Electrochem., 1976, 6: 311-320.

[38]

Xia X, Li H, Chen Z H. The Study of Semiconduction Properties of γ-MnO2 with Different Degrees of Reduction[J]. J. Electrochem. Soc., 1989, 136: 266-271.

[39]

Walia S, Balendhran S, Yi P, et al. MnO2-based Thermopower Wave Sources with Exceptionally Large Output Voltages[J]. J. Phys. Chem. C, 2013, 117: 9 137-9 142.

[40]

Farid Ul Islam A K M, Islam R, Khan K A. Studies of the Thermoelectric Effect in Semiconducting MnO2 Thin Films[J]. J. Mater. Sci. Mater. Electron., 2005, 16: 203-207.

[41]

Hedden M, Francis N, Haraldsen J T, et al. Thermoelectric Properties of Nano-Meso-Micro β-MnO2 Powders as a Function of Electrical Resistance[J]. Nanoscale Res. Lett., 2015, 10: 292-300.

[42]

Song F F, Wu L, Liang S. Giant Seebeck Coefficient Thermoelectric Device of MnO2 Powder[J]. Nanotechnology, 2012, 23: 1-5.

[43]

Walia S, Balendhran S, Nili H, et al. Transition Metal Oxides: Thermoelectric Properties[J]. Prog. Mater. Sci., 2013, 58(8): 1 443-1 489.

[44]

Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement Concr. Compos., 2004, 26(4): 291-297.

[45]

Liu J, Zhang L, He L, et al. Synthesis and Thermoelectric Properties of Polyaniline [J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2003, 18: 53-55.

[46]

Zhang H, Wu X H, Wang X L. Conductivity Mechanism of Asphalt Concrete with the PANI/PP Compound Conductive Fiber[J]. Mater. Sci. Forum, 2011, 689: 69-73.

[47]

Meng Q, Chung D D L. Battery in the Form of a Cement-Matrix Composite[J]. Cement Concr. Compos., 2010, 32(10): 829-839.

[48]

Banthia N, Djeridane S, Pigeon M. Electrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements[J]. Cem. Concr. Res., 1992, 22(5): 804-814.

[49]

Yu L, Gan M, Ma L, et al. Facile Synthesis of MnO2/Polyaniline Nanorod Arrays Based on Graphene and Its Electrochemical Performance[J]. Synth. Met., 2014, 198: 167-174.

[50]

Niu Z, Yang Z, Hu Z, et al. Polyaniline-Silica Composite Conductive Capsules and Hollow Spheres[J]. Adv. Funct. Mater., 2003, 13: 949-954.

[51]

Jiang Y, Cui X, Zu L, et al. High Rate Performance Nanocomposite Electrode of Mesoporous Manganese Dioxide/Silver Nanowires in KI Electrolytes[J]. Nanomaterials, 2015, 5: 1 638-1 653.

[52]

Wang H, Lu Z, Qian D, et al. Single-Crystal α-MnO2 Nanorods: Synthesis and Electrochemical Properties[J]. Nanotechnology, 2007, 18(11): 115 616

[53]

Kang X, Zhu X, Qian J, et al. Effect of Graphene Oxide (GO) on Hydration of Tricalcium Silicate (C3S) [J]. Constr. Build. Mater., 2019, 203: 514-524.

[54]

Zheng B, Lin Y H, Lan J L, et al. Thermoelectric Properties of Ca3Co4O9/Polyaniline Composites[J]. J. Mater. Sci. Technol., 2014, 30: 423-426.

[55]

Baldenebrolopez F J, Castorenagonzalez J H, Baldenebrolopez J A, et al. Cement-Matrix Composites Reinforced with Carbon Fibers as a Multifunctional Material[J]. Microsc. Microanaly, 2014, 20(s3): 1 880-1 881.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/