Chloride Corrosion of Reinforced Calcium Aluminate Cement Mortar

Yuting Chen , Kai Wu , Linglin Xu , Zhongping Wang , Yating Zhao , Zheyu Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 79 -87.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 79 -87. DOI: 10.1007/s11595-023-2670-3
Cementitious Materials

Chloride Corrosion of Reinforced Calcium Aluminate Cement Mortar

Author information +
History +
PDF

Abstract

This paper describes a study on the corrosion behavior of steel reinforcement in CAC mortars via electrochemical methods including corrosion potential, electrochemical impedance, and linear polarization evaluation. Results indicate that there is a non-linear relationship between the corrosion degree of steel reinforcement in CAC mortar and the concentration of NaCl solution. The electrochemical parameters of specimens immersed in 3% NaCl solution suddenly drop at 40 days, earlier than 60 days of the reference. And the charge transfer resistivity of the specimen has decreased by 11 orders of magnitude at 40 days, showing an evident corrosion on steel reinforcement. However, it is interesting to notice that the corrosion is delayed by high external chloride concentration. The specimens immersed in 9% and 15% NaCl solutions remain in a relatively stable state within 120 days with slight pitting. The great corrosion protection of CAC concrete to embedded steel bars enables its wide application in marine.

Keywords

electrochemical impedance / calcium aluminate cement mortar / chloride corrosion

Cite this article

Download citation ▾
Yuting Chen, Kai Wu, Linglin Xu, Zhongping Wang, Yating Zhao, Zheyu Zhu. Chloride Corrosion of Reinforced Calcium Aluminate Cement Mortar. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(1): 79-87 DOI:10.1007/s11595-023-2670-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bertolini L, Elsener B, Pedeferri P, et al. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair[J]. Wiley-VCH Verlag GmbH & Co. KGaA., 2013, 49(1065): 4 113-4 133.

[2]

De Weerdt K, Plusquellec G, Belda Revert A, et al. Effect of Carbonation on the Pore Solution of Mortar[J]. Cement Concrete Res., 2019, 118: 38-56.

[3]

Vollpracht A, Lothenbach B, Snellings R, et al. The Pore Solution of Blended Cements: a Review[J]. Mater. Struct., 2016, 49(8): 3 341-3 367.

[4]

Behnood A, Tittelboom KV, Belie ND. Methods for Measuring pH in Concrete: A Review[J]. Constr. Build. Mater., 2016, 105: 176-188.

[5]

Vélez W, Matta F, Ziehl P. Electrochemical Characterization of Early Corrosion in Prestressed Concrete Exposed to Salt Water[J]. Mater. Struct., 2016, 49(1): 507-520.

[6]

Cao Y, Gehlen C, Angst U, et al. Critical Chloride Content in Reinforced Concrete — An Updated Review Considering Chinese Experience[J]. Cement Concrete Res., 2019, 117: 58-68.

[7]

Castellote M, Fernandez L, Andrade C, et al. Chemical Changes and Phase Analysis of OPC Pastes Carbonated at Different CO2 Concentrations[J]. Mater. Struct., 2009, 42(4): 515-525.

[8]

Yuan Y, Shen J. Comparison of Concrete Carbonation Process under Natural Condition and High CO2 Concentration Environments[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2010, 25: 515-522.

[9]

Houst YF, Wittmann FH. Influence of Porosity and Water Content on the Diffusivity of CO2 and O2 through Hydrated Cement Paste[J]. Cement Concrete Res., 1994, 24(6): 1 165-1 176.

[10]

Ngala VT. Effects of Carbonation on Pore Structure and Diffusional Properties of Pydrated Cement Pastes[J]. Cement Concrete Res., 1997, 27: 995-1007.

[11]

Yohai L, Schreiner W, Valcarce MB, et al. Inhibiting Steel Corrosion in Simulated Concrete with Low Phosphate to Chloride Ratios[J]. J. Electrochem. Soc., 2016, 163(13): 729-737.

[12]

Figueira RB, Sadovski A, Melo AP, et al. Chloride Threshold Value to Initiate Reinforcement Corrosion in Simulated Concrete Pore Solutions: The Influence of Surface Finishing and pH[J]. Constr. Build. Mater., 2017, 141: 183-200.

[13]

Marcotte TD, Hansson CM. Corrosion Products that Form on Steel within Cement Paste[J]. Mater. Struct., 2007, 40(3): 325-340.

[14]

Dhouibi L, Triki E, Raharinaivo A. The Application of Electrochemical Impedance Spectroscopy to Determine the Long-term Effectiveness of Corrosion Inhibitors for Steel in Concrete[J]. Cem. Concr. Compos., 2002, 24(1): 35-43.

[15]

Soeylev TA, Richardson MG. Corrosion Inhibitors for Steel in Concrete: State-of-the-Art Report[J]. Constr. Build. Mater., 2008, 22(4): 609-622.

[16]

Trépanier SM, Hope BB, Hansson CM. Corrosion Inhibitors in Concrete[J]. Cement Concrete Res., 2001, 31(5): 713-718.

[17]

Zheng H, Li W, Ma F, et al. The Effect of a Surface-applied Corrosion Inhibitor on the Durability of Concrete[J]. Constr. Build. Mater., 2012, 37: 36-40.

[18]

Shihao MA, Weihua LI, Zheng H, et al. Research Progress of Anti-corrosion Mechanism and Performance Evaluation of Corrosion Inhibitor for Steel Bar[J]. Corrosion & Protection, 2017, 38: 963.

[19]

Ngala VT, Page CL, Page MM. Corrosion Inhibitor Systems for Remedial Treatment of Reinforced Concrete. Part 1: Calcium Nitrite[J]. Corros. Sci., 2002, 44(9): 2 073-2 087.

[20]

Ngala VT, Page CL, Page MM. Corrosion Inhibitor Systems for Remedial Treatment of Reinforced Concrete. Part 2: Sodium Monofluorophosphate[J]. Corros. Sci., 2003, 45(7): 1 523-1 537.

[21]

Morris W, Vico A, Vazquez M, Sanchez SR. Corrosion of Reinforcing Steel Evaluated by Means of Concrete Resistivity Measurements[J]. Corros. Sci., 2002, 44: 81.

[22]

Yuan CF, Niu DT. Chloride Ion Diffusion Model of the Concrete under Multiple Factors[J]. Advanced Science Letters, 2012, 14(1): 332-335.

[23]

Carsana M, Canonico F, Bertolini L. Corrosion Resistance of Steel Embedded in Sulfoaluminate-based Binders[J]. Concr. Compos., 2018, 88: 211.

[24]

Kou S, Poon CS. Compressive Strength, Pore Size Distribution and Chloride-ion Penetration of Recycled Aggregate Concrete Incorporating Class-F Fly Ash[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2006, 21(04): 130-136.

[25]

Mccarthy MJ, Tittle P, Dhir RK. Corrosion of Reinforcement in Concrete Containing Wet-stored Fly Ash[J]. Cem. Concr. Compo., 2019, 71: 102.

[26]

Heniegal AM, Amin M, Youssef H. Effect of Silica Fume and Steel Slag Coarse Aggregate on the Corrosion Resistance of Steel Bars[J]. Constr. Build. Mater., 2017, 155: 846-851.

[27]

Monticelli C, Natali ME, Balbo A, et al. Corrosion Behavior of Steel in Alkali-activated Fly Ash Mortars in the Light of Their Microstructural, Mechanical and Chemical Characterization[J]. Cement Concrete Res., 2016, 80: 60-68.

[28]

Lachemi M, Hossain K, Lambros V, et al. Self-consolidating Concrete Incorporating New Viscosity Modifying Admixtures[J]. Cement Concrete Res., 2004, 34(6): 917-926.

[29]

Kwasi Osafo Ampadu, et al. Chloride Ingress and Steel Corrosion in Cement Mortars Incorporating Low-quality Fly Ashes[J]. Cement Concrete Res., 2002, 32(6): 893-901.

[30]

Wu K, Hu Y, Zhang L, et al. Promoting the Sustainable Fabrication of Bricks from Municipal Sewage Sludge Through Modifying Calcination: Microstructure and Performance Characterization [J]. Constr. Build. Mater., 2022, 324: 126 401.

[31]

Wang Z, Chen Y, Xu L, et al. Insight into the Local C-S-H Structure and Its Evolution Mechanism Controlled by Curing Regime and Ca/Si Ratio[J]. Constr. Build. Mater., 2022, 333: 127 388.

[32]

Zhou Y, Wang Z, Zhu Z, et al. Time-varying Structure Evolution and Mechanism Analysis of Alite Particles Hydrated in Restricted Space[J]. Constr. Build. Mater., 2022, 341: 127 829.

[33]

Ann K, Cho CG. Corrosion Resistance of Calcium Aluminate Cement Concrete Exposed to a Chloride Environment[J]. Materials, 2014, 7(2): 887-898.

[34]

Argiz C, Angel Sanjuan M, Castro Borges P, et al. Modeling of Corrosion Rate and Resistivity of Steel Reinforcement of Calcium Aluminate Cement Mortar[J]. Adv. Civ. Eng., 2018(PT.1): 1–9

[35]

Ukrainczyk N, Vrbos N, Šipušić J. Influence of Metal Chloride Salts on Calcium Aluminate Cement Hydration[J]. Adv. Cem. Res., 2012, 2012(5): 249-262.

[36]

Ann KY, Kim TS, Kim JH, et al. The Resistance of High Alumina Cement Against Corrosion of Steel in Concrete[J]. Constr. Build. Mater., 2010, 24(8): 1 502-1 510.

[37]

Sanjuan MA. Formation of Chloroaluminates in Calcium Aluminate Cements Cured at High Temperatures and Exposed to Chloride Solutions[J]. J. Mater. Sci., 1997, 32(23): 6 207-6 213.

[38]

Sanjuán MA. Effect of Curing Temperature on Corrosion of Steel Bars Embedded in Calcium Aluminate Mortars Exposed to Chloride Solutions[J]. Corros. Sci., 1998, 41(2): 335-350.

[39]

Macias A, Kindness A, Glasser FP. Corrosion Behaviour of Steel in High Alumina Cement Mortar Cured at 5, 25 and 55 °C: Chemical and Physical Factors[J]. J. Mater. Sci., 1996, 31(9): 2 279-2 289.

[40]

Barnes P. Structure and Performance of Cements[J]. Can. J. Civil Eng., 2002, 1: 226-231.

[41]

Bate Cc S. High Alumina Cement Concrete in Existing Building Superstructures[M], 1984 Garston: Building Research Establishment.

[42]

Li G, Zhang A, Song Z, et al. Ground Granulated Blast Furnace Slag Effect on the Durability of Ternary Cementitious System Exposed to Combined Attack of Chloride and Sulfate[J]. Constr. Build. Mater., 2018, 158(15): 640-648.

[43]

Moradllo MK, Ley MT. Comparing Ion Diffusion in Alternative Cementitious Materials in Real Time by Using Non-destructive X-ray Imaging[J]. Cem. Concr. Compos., 2017, 82: 67-79.

[44]

Moffatt EG, Thomas MA. Performance of Rapid-repair Concrete in an Aggressive Marine Environment[J]. Constr. Build. Mater., 2017, 132(1): 478-486.

[45]

Li G, Zhang A, Song Z, et al. Study on the Resistance to Seawater Corrosion of the Cementitious Systems Containing Ordinary Portland Cement or/and Calcium Aluminate Cement[J]. Constr. Build. Mater., 2017, 157: 852-859.

[46]

Jin SH, Yang HJ, Hwang JP, et al. Corrosion Behaviour of Steel in CAC-mixed Concrete Containing Different Concentrations of Chloride[J]. Constr. Build. Mater., 2016, 110(1): 227-234.

[47]

Goñi S, Gaztañaga MT, Sagrera JL, et al. The Influence of NaCl on the Reactivity of High Alumina Cement in Water: Pore-solution and Solid Phase Characterization[J]. J. Mate. Res., 1994, 9(6): 1 533-1 539.

[48]

Hoshi Y, Hasegawa C, Okamoto T, et al. Electrochemical Impedance Analysis of Corrosion of Reinforcing Bars in Concrete[J]. Electrochemistry, 2019, 87(1): 78-83.

[49]

Dong BQ, Wu YS, Teng XJ, et al. Investigation of the Cl Migration Behavior of Cement Materials Blended with Fly Ash or/and Slag via the Electrochemical Impedance Spectroscopy Method[J]. Constr. Build. Mater., 2019, 211: 261-70.

[50]

Nguyen W, Duncan JF, Devine TM, et al. Electrochemical Polarization and Impedance of Reinforced Concrete and Hybrid Fiber-reinforced Concrete under Cracked Matrix Conditions[J]. Electrochim. Acta, 2018, 271: 319-336.

[51]

Diaz B, Guitian B, Novoa XR, et al. The Effect of Long-term Atmospheric Aging and Temperature on the Electrochemical Behaviour of Steel Rebars in Mortar[J]. Corros. Sci., 2018, 140: 143-150.

[52]

Pu Q, Jiang LH, Chu HQ, et al. Electrochemical Behavior of Steel Bar in Electrolytes: Influence of pH Value and Cations[J]. J. Wuhan. Univ. Technol. -Mater. Sci., 2011, 26(6): 1 133-1 136.

[53]

Sobhani J, Najimi M. Electrochemical Impedance Behavior and Transport Properties of Silica Fume Contained Concrete[J]. Constr. Build. Mater., 2013, 47: 910-918.

[54]

Yuan Q, Shi C, De Schutter G, et al. Chloride Binding of Cement-based Materials Subjected to External Chloride Environment — A Review[J]. Constr. Build. Mater., 2009, 23(1): 1-13.

[55]

Rasheeduzzafar. Influence of Cement Composition on Concrete Durability[J]. Aci. Mater. J., 1992, 89(6): 574-586.

[56]

Shao Y, Zhou M, Wang WX, et al. Identification of Chromate Binding Mechanisms in Friedel’s Salt[J]. Constr. Build. Mater., 2013, 48: 942-947.

[57]

Pacewska B, Nowacka M. Studies of Conversion Progress of Calcium Aluminate Cement Hydrates by Thermal Analysis Method[J]. J. Therm. Anal. Calorim., 2014, 117(2): 653-660.

[58]

Ann KY, Song HW. Chloride Threshold Level for Corrosion of Steel in Concrete[J]. Corros. Sci., 2007, 49(11): 4 113-4 114.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/