Oxidation and Electrical Properties of Cu-Mn3O4 Composite Coating Obtained by Electrodeposition on SOFC Interconnects

Ye Lü , Shengyun Luo

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 72 -78.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 72 -78. DOI: 10.1007/s11595-023-2669-9
Advanced Materials

Oxidation and Electrical Properties of Cu-Mn3O4 Composite Coating Obtained by Electrodeposition on SOFC Interconnects

Author information +
History +
PDF

Abstract

Cu-Mn3O4 composite coating was prepared on the SUS 430 ferritic stainless steel by electrodeposition and then exposed in air at 800 °C corresponding to the cathode atmosphere of solid oxide fuel cell (SOFC). A dual-layer oxide structure mainly comprising an external layer of CuO followed by (Cu,Mn,Fe)3O4 spinel and an internal layer of Cr-rich oxide was thermally developed on the coated steel. The scale area-specific resistances (ASRs) of the coated steels were lower than the scale ASR of the uncoated steel after identical thermal exposure. The external layer of CuO/(Cu,Mn,Fe)3O4 spinel not only served as a barrier to reduce the growth rate of Cr-rich oxide internal layer and to suppress the outward diffusion of Cr, but also lowered the surface scale ASRs considerably.

Keywords

solid oxide fuel cell / steel interconnect / Cu-Mn3O4 composite coating / area specific resistance

Cite this article

Download citation ▾
Ye Lü, Shengyun Luo. Oxidation and Electrical Properties of Cu-Mn3O4 Composite Coating Obtained by Electrodeposition on SOFC Interconnects. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(1): 72-78 DOI:10.1007/s11595-023-2669-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xin X, Wang S, Qian J. Development of the Spinel Powder Reduction Technique for Solid Oxide Fuel Cell Interconnect Coating[J]. Int.J.Hydrogen Energy, 2012, 37: 471-476.

[2]

Ou D R, Cheng M, Wang X. Development of Low-temperature Sintered Mn-Co Spinel Coatings on Fe-Cr Ferritic Alloys for Solid Oxide Fuel Cell Interconnect Applications[J]. J. Power Sources, 2013, 236: 200-206.

[3]

Guo Y, Bessa A, Aguado S. An All Porous Solid Oxide Fuel Cell (SOFC): A Bridging Technology Between Dual and Single Chamber SOFCs[J]. Energy Environ. Sci., 2013, 6: 2 119-2 123.

[4]

Stefan E, Tsekouras G, Irvine J T S. Development and Performance of MnFeCrO4-Based Electrodes for Solid Oxide Fuel Cells[J]. Adv. Energy Mater., 2013, 3: 1 454-1 462.

[5]

Paknahad P, Askari M, Ghorbanzadeh M. Application of Sol-gel Technique to Synthesis of Copper-cobalt Spinel on the Ferritic Stainless Steel Used for Solid Oxide Fuel Cell Interconnects[J]. J. Power Sources, 2014, 266: 79-87.

[6]

Magdefrau N J, Chen L, Sun E. Formation of Spinel Reaction Layers in Manganese Cobaltite-coated Crofer22 APU for Solid Oxide Fuel Cell Interconnects[J]. J. Power Sources, 2013, 227: 318-326.

[7]

Shen F, Lu K. CoxFe1−x Oxide Coatings on Metallic Interconnects for Solid Oxide Fuel Cells[J]. J. Power Sources, 2016, 330: 231-239.

[8]

Stefan E, Irvine J T S. Synthesis and Characterization of Chromium Spinels as Potential Electrode Support Materials for Intermediate Temperature Solid Oxide Fuel Cells[J]. J. Mater. Sci., 2011, 46: 7 191-7 197.

[9]

Wang K, Liu Y, Fergus J W. Interactions Between SOFC Interconnect Coating Materials and Chromia[J]. J. Am. Ceram. Soc., 2011, 94: 4 490-4 495.

[10]

Fergus J W. Lanthanum Chromite-based Materials for Solid Oxide Fuel Cell Interconnects[J]. Solid State Ionics, 2004, 171: 1-15.

[11]

Zhu W, Deevi S C. Development of Interconnect Materials for Solid Oxide Fuel Cells[J]. Mater. Sci. Eng. A, 2003, 348: 227-243.

[12]

Antepara I, Villarreal I, Rodríguez-Martínez L M. Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs[J]. J. Power Sources, 2005, 151: 103-107.

[13]

Wu J, Liu X. Recent Development of SOFC Metallic Interconnect[J]. J. Mater. Sci. Technol., 2010, 26: 293-305.

[14]

Wei P, Bateni M R, Deng X. Conversion of Copper and Manganese Metallic Films to Spinel Coating[J]. J. Mater. Sci., 2012, 47: 5 205-5 215.

[15]

Akanda S R, Walter M E, Kidner N J. Mechanical Characterization of Oxide Coating-interconnect Interfaces for Solid Oxide Fuel Cells[J]. J. Power Sources, 2012, 210: 254-262.

[16]

Ebrahimifar H, Zandrahimi M. Oxidation and Electrical Behavior of AISI 430 Coated with Cobalt Spinels for SOFC Interconnect Applications[J]. Surf. Coat. Technol., 2011, 206: 75-81.

[17]

Wu J, Johnson C D, Gemmen R S. The Performance of Solid Oxide Fuel Cells with Mn-Co Electroplated Interconnect as Cathode Current Collector[J]. J. Power Sources, 2009, 189: 1 106-1 113.

[18]

Kim Y M, Chen X, Jiang S. Chromium Deposition and Poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3−δ Cathode of Solid Oxide Fuel Cells[J]. Electrochem. Solid State Lett., 2011, 14: B41-B45.

[19]

Stanislowski M, Wessel E, Hilpert K. Chromium Vaporization from High-Temperature Alloys[J]. J. Electrochem. Soc., 2007, 154: A295-A306.

[20]

Shaigan N, Qu W, Ivey D G. A Review of Recent Progress in Coatings, Surface Modifications and Alloy Developments for Solid Oxide Fuel Cell Ferritic Stainless Steel Interconnects[J]. J. Power Sources, 2010, 195: 1 529-1 542.

[21]

Elangovan S, Balagopal S, Timper U. Evaluation of Ferritic Stainless Steel for Use as Metal Interconnects for Solid Oxide Fuel Cells[J]. J. Mater. Eng. Perform., 2004, 13: 265-273.

[22]

Yang Z, Xia G, Maupin G. Evaluation of Perovskite Overlay Coatings on Ferritic Stainless Steel for SOFC Interconnect Applications[J]. J. Electrochem. Soc., 2006, 153: A1 852-1 858.

[23]

Orlovskaya N, Corotalo A, Johnson C. Characterization of LaCrO3 Perovskite Coating Deposited by Magnetron Sputtering on an Iron Based Chromium Containing Alloy[J]. J. Am. Ceram. Soc., 2004, 87: 1 981-1 987.

[24]

Brylewski T, Dabek J, Przybylski K. Screen-printed (La,Sr)CrO3 Coatings on Ferritic Stainless Steel Interconnects for Solid Oxide Fuel Cells Using Nanopowders Prepared by Means of Ultrasonic Spray Pyrolysis[J]. J. Power Sources, 2012, 208: 86-95.

[25]

Pyo S S, Lee S B, Lim T H. Characteristic of (La0.8Sr0.2)0.98MnO3 Coating on Crofer 22 APU Used as Metallic Interconnects for Solid Oxide Fuel Cell[J]. Int. J. Hydrog. Energy, 2011, 36: 1 868-1 881.

[26]

Garcia-Vargas M J, Zahid M, Tietz F. Use of SOFC Metallic Interconnect Coated with Spinel Protective Layers using the APS Technology[J]. ECS Trans., 2007, 7: 2 399-2 405.

[27]

Petric A, Ling H. Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures[J]. J. Am. Ceram. Soc., 2007, 90: 1 515-1 520.

[28]

Bordeneuve H, Tenailleau C, Guillemet F S. Structural Variations and Cation Distributions in Mn3−xCoxO4 (0≤x≤3) Dense Ceramics Using Neutron Diffraction Data[J]. Solid State Sci., 2010, 12: 379-386.

[29]

Brylewski T, Kucza W. A damczy. Microstructure and Electrical Properties of Mn1+xCo2−xO4 (0≤x≤1.5) Spinels Synthesized Using EDTA-gel Processes[J]. Ceram. Int., 2014, 40: 13 873-13 882.

[30]

Verónica M P, Ana M A, María L N. The Effect of Doping (Mn,B) 3O4 Materials as Protective Layers in Different Metallic Interconnects for SOFC[J]. J. Power Sources, 2013, 243: 419-430.

[31]

Liu Y, Fergus J W, Wang K. Crystal Structure, Chemical Stabilities and Electrical Conductivity of Fe-doped Manganese Cobalt Spinel Oxides for SOFC Interconnect Coatings[J]. J. Electrochem. Soc., 2013, 160: F1316-F1321.

[32]

Wu J, Gemmen R S, Manivannan A. Investigation of Mn/Co Coated T441 Alloy as SOFC Interconnect by On-cell Tests[J]. Int. J. Hydrogen Energy, 2011, 36: 4 525-4 529.

[33]

Lewis M J, Zhu J. A Process to Synthesize (Mn, Co)3O4 Spinel Coatings for Protecting SOFC Interconnect Alloys Electrochem[J]. Solid State Lett., 2011, 14: B9-B12.

[34]

Abdoli H, Alizadeh P. Electrophoretic Deposition of (Mn,Co)3O4 Spinel Nano Powder on SOFC Metallic Interconnects[J]. Mater. Lett., 2012, 80: 53-55.

[35]

Hosseini N, Karimzadeh F, Abbasi M H. Microstructural Characterization and Electrical Conductivity of QixMn3−xO4 (0.9≤x≤1.3) Spinels Produced by Optimized Glycine-nitrate Combustion and Mechanical Milling Processes[J]. Ceram. Int., 2014, 40: 12 219-12 226.

[36]

Huang W, Gopalan S, Pal U B. Evaluation of Electrophoretically Deposited CuMn1.8O4 Spinel Coatings on Crofer 22 APU for Solid Oxide Fuel Cell Interconnects[J]. J. Electrochem. Soc., 2008, 155: B1 161-B1 167.

[37]

Bertaldi M, Zandonella T, Montinaro D. Protective Coatings of Metallic Interconnects for IT-SOFC Application[J]. J. Fuel Cell Sci. & Technol., 2008, 5: 97-107.

[38]

Waluyo N S, Park B K, Lee S B. (Mn,Cu)3O4-based Conductive Coatings as Effective Barriers to High-temperature Oxidation of Metallic Interconnects for Solid Oxide Fuel Cells[J]. J. Solid State Electrochem, 2014, 18: 445-452.

[39]

Hosseini N, Abbasi M H, Karimzadeh F. Development of Cu1.3Mn1.7O4 Spinel Coating on Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnects[J]. J. Power Sources, 2015, 273: 1 073-1 083.

[40]

Brylewski T, Kruk A, Bobruk M. Structure and Electrical Properties of Cu-doped Mn-Co-O Spinel Prepared via Soft Chemistry and Its Application in Intermediate-temperature Solid Oxide Fuel Cell Interconnects[J]. J. Power Sources, 2016, 333: 145-155.

[41]

Geng S J, Zhao Q, Li Y H. Sputtered MnCu Metallic Coating on Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnects Application[J]. Int. J. Hydrogen Energy, 2017, 42: 10 298-10 307.

[42]

Wu J, Johnson C D, Jiang Y. Pulse Plating of Mn-Co Alloys for SOFC Interconnect Applications[J]. Electrochimica Acta, 2008, 54: 793-800.

[43]

Wei P, Deng X, Bateni M R. Oxidation and Electrical Conductivity Behavior of Spinel Coatings for Metallic Interconnects of Solid Oxide Fuel Cells[J]. Corrosion, 2007, 63: 529-536.

[44]

Bateni M R, Wei P, Deng X. Spinel Coatings for UNS 430 Stainless Steel Interconnects[J]. Surf. Coat. Technol., 2007, 201: 4 677-4 684.

[45]

Joshi S, Petric A. Nickel Substituted CuMn2O4 Spinel Coatings for Solid Oxide Fuel Cell Interconnects[J]. Int. J. Hydrogen Energy, 2017, 42: 5 584-5 589.

[46]

Lv Y, Geng S J, Shi Z N. Effect of pH of the Galvanic Bath on Electrodeposition of Cu-Mn3O4 Composite Coatings[J]. Mater. Chem. Phys., 2017, 189: 176-182.

[47]

Geng S J, Li Y, Ma Z. Evaluation of Electrodeposited Fe-Ni Alloy on Ferritic Stainless Steel Solid Oxide Fuel Cell Interconnect[J]. J. Power Sources, 2010, 195: 3 256-3 260.

[48]

Lv Y, Geng S J, Shi Z N. Evaluation of Electroplated Copper Coating on Ferritic Stainless Steel for Solid Oxide Fuel Cells Interconnects[J]. J. Alloys Compd., 2017, 726: 269-275.

[49]

Geng S J, Qi S, Xiang D. Oxidation and Electrical Behavior of Ferritic Stainless Steel Interconnect with Fe-Co-Ni Coating by Electroplating[J]. J. Power Sources, 2012, 215: 274-278.

[50]

Lenka R K, Patro P K, Sharma J. Evaluation of La0.75Sr0.25Cr0.5Mn0.5O3 Protective Coating on Ferritic Stainless Steel Interconnect for SOFC Application[J]. Int. J. Hydrogen Energy, 2016, 41: 20 365-20 372.

[51]

Wu J, Jiang Y, Johnson C D. DC Electrodeposition of Mn-Co Alloys on Stainless Steels for SOFC Interconnect Application[J]. J. Power Sources, 2008, 177: 376-385.

[52]

Collins C, Lucas J, Buchanan T L. Chromium Volatility of Coated and Uncoated Steel Interconnects for SOFCs[J]. Surf. Coat. Technol., 2006, 201: 4 467-4 470.

[53]

Yang Z, Xia G, Simner S P. Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnect[J]. J. Electrochem. Soc., 2005, 152: A1 896-1 901.

[54]

Stanislowski M, Froitzheim J, Niewolak L. Reduction of Chromium Vaporization from SOFC Interconnectors by Highly Effective Coatings[J]. J. Power Sources, 2007, 164: 578-589.

[55]

Nielsen K A, Dinesen A R, Korcakova L. Testing of Ni-Plated Ferritic Steel Interconnect in SOFC Stacks[J]. Fuel Cells, 2006, 2: 100-106.

[56]

Stevenson J W, Yang Z, Xia G. Long-term Oxidation Behavior of Spinel-coated Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect Applications[J]. J. Power Sources, 2013, 231: 256-263.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/