Microstructure and Mechanical Properties of ZrC x-NbC y-Cu Composites by Reactive Infiltration at 1 300 °C

Dong Wang , Kai Xu , Boxin Wei , Yujin Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 52 -58.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 52 -58. DOI: 10.1007/s11595-023-2666-z
Advanced Materials

Microstructure and Mechanical Properties of ZrC x-NbC y-Cu Composites by Reactive Infiltration at 1 300 °C

Author information +
History +
PDF

Abstract

ZrC x-NbC y-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1 300 °C. The effect of Zr content in the infiltrator on microstructure of the as-synthesized composites was studied. Mechanical properties of the composites were reported. A partial displacement of Nb atoms in NbC by Zr atoms from Zr-Cu melt occurs during the reaction between Zr-Cu melt and porous NbC preform. The formation of a core-shell structure suggests the reaction is mainly a dissolution-precipitation type. NbC dissolves into Zr-Cu melt, from which the (Nb,Zr)Cz phase precipitates and grows. With increasing Zr content in the Zr-Cu infiltrator, the reaction is enhanced and the infiltration is easily chocked. ZrC x-NbC y-Cu composite is synthesized using Zr14Cu51 infiltrator. The flexural strength and fracture toughness of ZrC x-NbC y-Cu composite reach 637 MPa and 12.7 MPa·m1/2, respectively. And the improved toughness is probably attributed to residual Cu phase and plate-like Nb xC y phases.

Keywords

ZrC x-NbC y-Cu composite / reactive melt infiltration / microstructure / mechanical properties

Cite this article

Download citation ▾
Dong Wang, Kai Xu, Boxin Wei, Yujin Wang. Microstructure and Mechanical Properties of ZrC x-NbC y-Cu Composites by Reactive Infiltration at 1 300 °C. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(1): 52-58 DOI:10.1007/s11595-023-2666-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds[J]. J. Eur. Ceram. Soc., 1999, 19(13): 2 405-2 414.

[2]

Upadhya K Y, Yang J M, Hoffman W P. Advanced Materials for Ultrahigh Temperature Structural Applications Above 2 000 °C[R]. Air Force Research Laboratory, 1997

[3]

Pierson H O. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications[M], 1996 Westwood: William Andrew.

[4]

Caccia M, Tabandeh-Khorshid M, Itskos G, et al. Ceramic-metal Composites for Heat Exchangers in Concentrated Solar Power Plants[J]. Nature, 2018, 562(7727): 406-409.

[5]

Yang H T, Zhang J, Li J G, et al. Densification and Structure Evolution of ZrB2-ZrO2 Composites Prepared by Plasma Activated Sintering using ZrB2@ZrO2 Powder[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2021, 36(2): 215-222.

[6]

Wei B, Wang Y, Zhao Y, et al. Effect of NbC Content on Microstructure and Mechanical Properties of W-NbC Composites[J]. Int. J. Refract. Met. Hard Mater., 2018, 70: 66-76.

[7]

Binner J, Porter M, Baker B, et al. Selection, Processing, Properties and Applications of Ultra-high Temperature Ceramic Matrix Composites, UHTCMCs-a Review[J]. Int. Mater. Rev., 2019: 1–56

[8]

Shabalin I L. Ultra-high Temperature Materials II: Refractory Carbides I (Ta, Hf, Nb and Zr Carbides)[M], 2019 Berlin: Springer.

[9]

He C, Stangle G C. The Mechanism and Kinetics of the Niobium-Carbon Reaction under Self-propagating High-temperature Synthesis-like Conditions[J]. J. Mater. Res., 1995, 10(11): 2 829-2 841.

[10]

Wei W, Wang H, Gao Z, et al. Microstructure Evolution of As-cast Nb-Ti-C Alloys[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: s440-s443.

[11]

Wang X, Liu J, Kan Y, et al. Effect of Solid Solution Formation on Densification of Hot-pressed ZrC Ceramics with MC (M=V, Nb, and Ta) Additions[J]. J. Eur. Ceram. Soc., 2012, 32(8): 1 795-1 802.

[12]

Wang X, Guo W, Kan Y, et al. Densification Behavior and Properties of Hot-pressed ZrC Ceramics with Zr and Graphite Additives[J]. J. Eur. Ceram. Soc., 2011, 31(6): 1 103-1 111.

[13]

Lidman W G, Hamjian H J. Reactions During Sintering of a Zirconium Carbide-Niobium Cermet[J]. J. Am. Ceram. Soc., 1952, 35(9): 236-240.

[14]

Ocak B C, Yavas B, Akin I, et al. Spark Plasma Sintered ZrC-TiC-GNP Composites: Solid Solution Formation and Mechanical Properties[J]. Ceram. Int., 2018, 44(2): 2 336-2 344.

[15]

Li Y, Katsui H, Goto T. Spark Plasma Sintering of TiC-ZrC Composites[J]. Ceram. Int., 2015, 41(5PartB): 7 103-7 108.

[16]

Li Y, Katsui H, Goto T. Effect of Heat Treatment on the Decomposition of TiC-ZrC Solid Solutions by Spark Plasma Sintering[J]. Prep. Appl. Ultra-high Temp. Ceram. Matrix Compos., 2016, 36(15): 3 795-3 800.

[17]

Dickerson M B, Wurm P J, Schorr J R, et al. Near Net-shape, Ultra-high Melting, Recession-resistant ZrC/W-based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method[J]. J. Mater. Sci., 2004, 39(19): 6 005-6 015.

[18]

Zhu Y, Wang S, Li W, et al. Preparation of Carbon Fiber-reinforced Zirconium Carbide Matrix Composites by Reactive Melt Infiltration at Relative Low Temperature[J]. Scr. Mater., 2012, 67(10): 822-825.

[19]

Wang D, Wang Y, Rao J, et al. Influence of Reactive Melt Infiltration Parameters on Microstructure and Properties of Low Temperature Derived Cf/ZrC Composites[J]. Mater. Sci. Eng., A, 2013, 568: 25-32.

[20]

Zhang S, Wang S, Zhu Y, et al. Fabrication of ZrB2-ZrC-based Composites by Reactive Melt Infiltration at Relative Low Temperature[J]. Scr. Mater., 2011, 65(2): 139-142.

[21]

Wang D, Chen H, Wang Y, et al. Precipitations of W/Cu Metallic Phases in ZrC in the Reactive Melt Infiltrated ZrC/W Composite[J]. J. Alloys Compd., 2020, 843: 155 919.

[22]

Wang D, Wang Y. Mechanism of Incongruent Reactions Between ZrCu Melts and Solid Tungsten Carbide[J]. Metall. Mater. Trans. B, 2020, 51(4): 1 603-1 616.

[23]

Najafzadehkhoee A, Habibolahzadeh A, Qods F, et al. Effect of ZrC Nanopowder Addition in WC Preforms on Microstructure and Properties of W-ZrC Composites Prepared by the Displacive Compensation of Porosity (DCP) Method[J]. J. Aust. Ceram. Soc., 2021, 57: 515-523.

[24]

Slater J C. Atomic Radii in Crystals[J]. J. Chem. Phys., 1964, 41(10): 3 199-3 204.

[25]

Wu D, Huangfu G, Wang D, et al. Microstructure and Mechanical Properties of ZrC-TaCx Composite Fabricated by Displacive Compensation of Porosity at 1 300 °C[J]. Ceram. Int., 2018, 44(1): 246-253.

[26]

Peng J, Lara-Curzio E, Shin D. High-throughput Thermodynamic Screening of Carbide/Refractory Metal Cermets for Ultra-high Temperature Applications[J]. Calphad, 2019, 66: 101 631.

[27]

Lanin A, Zubarev P, Vlasov K. Mechanical and Thermophysical Properties of Materials in HTGR Fuel Bundles[J]. At. Energy, 1993, 74(1): 40-44.

[28]

Heinrich H-W, Wolf M, Schmidt D. Cemented Carbide Body Containing Zirconium and Niobium and Method of Making the Same [P]. China: 7, 309, 466, 2007-12-18

[29]

Rempel S V, Gusev A I. Surface Segregation of ZrC from a Carbide Solid Solution[J]. Phys. Solid State, 2002, 44(1): 68-74.

[30]

Gusev A I, Rempel’ S V. X-ray Diffraction Study of the Nanostructure Resulting from Decomposition of (ZrC)1−x(NbC)x Solid Solutions[J]. Inorg. Mater., 2003, 39(1): 43-47.

[31]

Shabalin I L. Ultra-high Temperature Materials I[M], 2014 Berlin: Springer.

[32]

Frage N, Froumin N, Rubinovich L, et al. Infiltrated TiC/Cu Composites[C]. 15th International Plansee Seminar, Austria, 2001

[33]

Wang T, Qin S, Xiong N, et al. Study on Ablation Resistance and Thermal Shock Resistance of TiC/Cu Composite[J]. Aerosp. Mater. Technol., 2007, 37(2): 62-65.

[34]

Wei B, Chen L, Wang Y, et al. Densification, Mechanical and Thermal Properties of ZrC1−x Ceramics Fabricated by Two-step Reactive Hot Pressing of ZrC and ZrH2 Powders[J]. J. Eur. Ceram. Soc., 2018, 38(2): 411-419.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/