Enhanced Microwave Absorption for High Filler Content Composite Molded from Polymer Coated Flaky Carbonyl Irons Modified by Silane Coupling Agents

Zhengming Cui , Guoqing Ma , Mengqi Wang , Chuangyu Luo , Zhihong Chen , Huiru Ma , Qifan Li , Wei Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 42 -51.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (1) : 42 -51. DOI: 10.1007/s11595-023-2665-0
Advanced Materials

Enhanced Microwave Absorption for High Filler Content Composite Molded from Polymer Coated Flaky Carbonyl Irons Modified by Silane Coupling Agents

Author information +
History +
PDF

Abstract

A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles (FCIPs) by styrenebutadiene-styrene block copolymer (SBS) in the assistance of coupling agent modification. Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio (55 vol%) of absorbents. Importantly, the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs, avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials. Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell, which is verified by resistivity and corrosion current density measurements, and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS. The obtained microwave absorbing sheet shows a minimum reflection loss of −38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm.

Keywords

microwave absorber / coating quality / magnetic permeability / permittivity / low frequency

Cite this article

Download citation ▾
Zhengming Cui, Guoqing Ma, Mengqi Wang, Chuangyu Luo, Zhihong Chen, Huiru Ma, Qifan Li, Wei Li. Enhanced Microwave Absorption for High Filler Content Composite Molded from Polymer Coated Flaky Carbonyl Irons Modified by Silane Coupling Agents. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(1): 42-51 DOI:10.1007/s11595-023-2665-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu L, Deng H, Tang X, et al. Specific Electromagnetic Radiation in the Wireless Signal Range Increases Wakefulness in Mice[J]. Proc. Natl. Acad. Sci. U.S.A., 2021, 118: 31 105 838 118.

[2]

Xie P, Liu Y, Feng M, et al. Hierarchically Porous Co/C Nanocomposites for Ultralight High-performance Microwave Absorption[J]. Advanced Composites and Hybrid Materials, 2021, 4(1): 173-185.

[3]

Lu X, Zhu D, Li X, et al. Gelatin-derived N-doped Hybrid Carbon Nanospheres with an Adjustable Porous Structure for Enhanced Electromagnetic Wave Absorption[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 946-956.

[4]

Wang Y, Han X, Xu P, et al. Synthesis of Pomegranate-like Mo2C@C Nanospheres for Highly Efficient Microwave Absorption[J]. Chem. Eng. J., 2019, 372: 312-320.

[5]

Zeng X, Cheng X, Yu R, et al. Electromagnetic Microwave Absorption Theory and Recent Achievements in Microwave Absorbers[J]. Carbon, 2020, 168: 606-623.

[6]

Li W, Zhang Y, Wu T, et al. Broadband Radar Cross Section Reduction by in-plane Integration of Scattering Metasurfaces and Magnetic Absorbing Materials[J]. Results Phys., 2019, 12: 1 964-1 970.

[7]

Sun X, Li Y, Huang Y, et al. Achieving Super Broadband Electromagnetic Absorption by Optimizing Impedance Match of rGO Sponge Metamaterials[J]. Adv. Funct. Mater., 2021, 32(5): 2 107 508

[8]

Lee J, Tejedor E, Ranta-aho K, et al. Spectrum for 5G: Global Status, Challenges, and Enabling Technologies[J]. IEEE Commun. Mag., 2018, 56(3): 12-18.

[9]

Zhan Y, Hao X, Wang L, et al. Superhydrophobic and Flexible Silver Nanowire-coated Cellulose Filter Papers with Sputter-deposited Nickel Nanoparticles for Ultrahigh Electromagnetic Interference Shielding[J]. ACS Appl. Mater. Interfaces, 2021, 13(12): 14 623-14 633.

[10]

Liao Y, He G, Duan Y. Morphology-controlled Self-assembly Synthesis and Excellent Microwave Absorption Performance of MnO2 Microspheres of Fibrous Flocculation[J]. Chem. Eng. J., 2021, 425: 130 512.

[11]

Maklakov S S, Lagarkov A N, Maklakov S A, et al. Corrosion-resistive Magnetic Powder Fe@SiO2 for Microwave Applications[J]. J. Alloys Compd., 2017, 706: 267-273.

[12]

Ge C, Wang L, Liu G, et al. Enhanced Electromagnetic Properties of Carbon Nanotubes and SiO2-coated Carbonyl Iron Microwave Absorber[J]. J. Alloys Compd., 2018, 767: 173-180.

[13]

Han R, Han X, Qiao L, et al. Enhanced Microwave Absorption of ZnO-coated Planar Anisotropy Carbonyl-iron Particles in Quasimicrowave Frequency Band[J]. Mater. Chem. Phys., 2011, 128(3): 317-322.

[14]

Guo Y, Jian X, Zhang L, et al. Plasma-induced FeSiAl@Al2O3@SiO2 Core-shell Structure for Exceptional Microwave Absorption and Anti-oxidation at High Temperature[J]. Chem. Eng. J., 2020, 384: 123 371.

[15]

Fan Q, Huang Y, Chen M, et al. Integrated Design of Component and Configuration for a Flexible and Ultrabroadband Radar Absorbing Composite[J]. Compos. Sci. Technol., 2019, 176: 81-89.

[16]

Semenenko V N, Chistyaev V A, Politiko A A, et al. Complex Permittivity and Permeability of Composite Materials Based on Carbonyl Iron Powder Over an Ultrawide Frequency Band[J]. Phys. Rev. Appl., 2021, 16(1): 014 062

[17]

Han R, Qiao L, Wang T, et al. Microwave Complex Permeability of Planar Anisotropy Carbonyl-iron Particles[J]. J. Alloys Compd., 2011, 509: 2 734-2 737.

[18]

Woo S, Yoo C-S, Kim H, et al. Effects of the Morphology of CIPs on Microwave Absorption Behaviors[J]. Electronic Materials Letters, 2017, 13(6): 471-477.

[19]

Qian K, Sokolov A S, Li Q, et al. High-performance Metallic Amorphous Magnetic Flake-based Magnetodielectric Inductors[J]. IEEE Magn. Lett., 2020, 11: 1-5.

[20]

Wang W, Guo J, Long C, et al. Flaky Carbonyl Iron Particles with Both Small Grain Size and Low Internal Strain for Broadband Microwave Absorption[J]. J. Alloys Compd., 2015, 637: 106-111.

[21]

Qing Y, Zhou W, Jia S, et al. Microwave Electromagnetic Property of SiO2-coated Carbonyl Iron Particles with Higher Oxidation Resistance[J]. Physica B, 2011, 406(4): 777-780.

[22]

Wang F, Long C, Wu T, et al. Enhancement of Low-frequency Magnetic Permeability and Absorption by Texturing Flaky Carbonyl Iron Particles[J]. Journal of Alloys and Compounds, 2020, 823: 153 827.

[23]

Min D, Zhou W, Qing Y, et al. Greatly Enhanced Microwave Absorption Properties of Highly Oriented Flake Carbonyl Iron/Epoxy Resin Composites Under Applied Magnetic Field[J]. J. Mater. Sci., 2017, 52(4): 2 373-2 383.

[24]

Lai W, Wang Y, He J. Effects of Carbonyl Iron Powder (CIP) Content on the Electromagnetic Wave Absorption and Mechanical Properties of CIP/ABS Composites[J]. Chin. Phys. B, 2020, 12(8): 1 694

[25]

Wen F, Zuo W, Yi H, et al. Microwave-absorbing Properties of Shape-optimized Carbonyl Iron Particles with Maximum Microwave Permeability[J]. Physica B, 2009, 404(20): 3 567-3 570.

[26]

Zhou Y, Xie H, Zhou W, et al. Enhanced Antioxidation and Microwave Absorbing Properties of SiO2-coated Flaky Carbonyl Iron Particles[J]. J. Magn. Magn. Mater., 2018, 446: 143-149.

[27]

Zuo Y, Yao Z, Lin H, et al. Synthesis and Characterization of Carbonyl Iron@epoxy Core-shell Microspheres for Enhanced Microwave Absorption Performance[J]. J. Mater. Sci., 2019, 54(18): 11 827-11 840.

[28]

Zhan Y, Wang J, Zhang K, et al. Fabrication of a Flexible Electromagnetic Interference Shielding Fe3O4@reduced Graphene Oxide/Natural Rubber Composite with Segregated Network[J]. Chem. Eng. J., 2018, 344: 184-193.

[29]

Huang L, Li J, Li Y, et al. Fibrous Composites with Double-continuous Conductive Network for Strong Low-frequency Microwave Absorption[J]. Ind. Eng. Chem. Res., 2019, 58(27): 11 927-11 938.

[30]

Naito Y, Suetake K. Application of Ferrite to Electromagnetic Wave Absorber and Its Characteristics[J]. IEEE Trans. Microwave Theory Tech., 1971, 19(1): 65-72.

[31]

Suzuki S, Yanagihara K, Hirokawa K. XPS Study of Oxides Formed on the Surface of High-purity Iron Exposed to Air[J]. Surface and Interface Analysis, 2000, 30(1): 372-376.

[32]

Zhang F, Yu J, Han J. Effects of Thermal Oxidative Ageing on Dynamic Viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified Asphalts[J]. Constr. Build. Mater., 2011, 25(1): 129-137.

[33]

Cui S, Shen X, Lin B, et al. Surface Organic Modification of Fe3O4 Magnetic Nanoparticles[J]. J. Wuhan Univ. Technol., 2008, 23(4): 436-439.

[34]

Wagner A J, Wolfe G M, Fairbrother D H. Reactivity of Vapor-deposited Metal Atoms with Nitrogen-containing Polymers and Organic Surfaces Studied by in Situ XPS[J]. Appl. Surf. Sci., 2003, 219(3–4): 317-328.

[35]

Chung K H, Wu C S, Malawer E G. Thermomagnetometry and Thermogravimetric Analysis of Carbonyl Iron Powder[J]. Thermochim. Acta, 1989, 154(2): 195-204.

[36]

Yang D, Ni Y, Kong X, et al. Mussel-inspired Modification of Boron Nitride for Natural Rubber Composites with High Thermal Conductivity and Low Dielectric Constant[J]. Compos. Sci. Technol., 2019, 177: 18-25.

[37]

Ma G, Duan Y, Liu Y, et al. Effect of Durface Modified SiO2 Powders on Microwave Absorbing Properties of Flaky FeSiAl Coatings[J]. J. Mater. Sci. Mater. Electron., 2018, 29(20): 17 405-17 415.

[38]

Gong Y X, Zhen L, Jiang J T, et al. Synthesis and Microwave Electromagnetic Properties of CoFe Alloy Nanoflakes Prepared with Hydrogen-thermal Reduction Method[J]. J. Appl. Phys., 2009, 106(6): 064 302

[39]

Rozanov K N, Koledintseva M Y. Application of Generalized Snoek’s Law Over a Finite Frequency Range: A Case Study[J]. J. Appl. Phys., 2016, 119(7): 073 901

[40]

Zhou X, Jia Z, Feng A, et al. Construction of Multiple Electromagnetic Loss Mechanism for Enhanced Electromagnetic Absorption Performance of Fish Scale-derived Biomass Absorber[J]. Compos. B. Eng., 2020, 192: 107 980.

[41]

Cheng Y, Cao J, Li Y, et al. The Outside-in Approach to Construct Fe3O4 Nanocrystals/mesoporous Carbon Hollow Spheres Core-shell Hybrids Toward Microwave Absorption[J]. ACS Sustain. Chem. Eng., 2017, 6(1): 1 427-1 435.

[42]

Chen J, Zheng J, Huang Q, et al. Enhanced Microwave Absorbing Ability of Carbon Fibers with Embedded FeCo/CoFe2O4 Nanoparticles[J]. ACS Appl. Mater. Interfaces, 2021, 13(30): 36 182-36 189.

[43]

Long C, Xu B, Han C, et al. Flaky Core-shell Particles of Iron@iron Oxides for Broadband Microwave Absorbers in S and C Bands[J]. J. Alloys Compd., 2017, 709: 735-741.

[44]

Wang F, Long C, Wu T, et al. Enhancement of Low-frequency Magnetic Permeability and Absorption by Texturing Flaky Carbonyl Iron Particles[J]. J. Alloys Compd., 2020, 823: 153 827.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/