Nitrogen-doped TiO2/Graphene Composites Synthesized via the Vapour-thermal Method

Hailong Tang , Min Wang , Tangtong Ju , Yue Dai , Meiling Wang , Yongqing Ma , Ganhong Zheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1105 -1113.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1105 -1113. DOI: 10.1007/s11595-022-2640-x
Advanced Materials

Nitrogen-doped TiO2/Graphene Composites Synthesized via the Vapour-thermal Method

Author information +
History +
PDF

Abstract

TiO2/graphene composite was synthesized in the vapor environment of isopropanol. In order to improve the properties of composite, N-doped of TiO2/graphene with different N/Ti molar ratio was prepared in the vapor environment of deionized water and used urea as the source of nitrogen. The N-doped occupies in the interstitial sites of TiO2 lattice, substitutes for O element in TiO2 and for C element in graphene, and simultaneously changes the chemical states of Ti and O elements in TiO2. N-doped changes the morphology of TiO2 from nano-sheets to nanoparticles, accompanying with the decrease in specific surface area of the composites, first increases the particle size of TiO2 and then decreases, and alters the vibration modes of Ti-O-Ti. The composite with R N/Ti=2 exhibits the enhanced photocatalytic degradation performance to methylene blue, and the degradation rate increases from 7.7×10−2 min−1 for the undoped composite to 9.6×10−2 min−1.

Keywords

TiO2/graphene / vapor-thermal / nitrogen-doped / photocatalytic performance

Cite this article

Download citation ▾
Hailong Tang, Min Wang, Tangtong Ju, Yue Dai, Meiling Wang, Yongqing Ma, Ganhong Zheng. Nitrogen-doped TiO2/Graphene Composites Synthesized via the Vapour-thermal Method. Journal of Wuhan University of Technology Materials Science Edition, 2023, 37(6): 1105-1113 DOI:10.1007/s11595-022-2640-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rao R, Zhang X, Sun X, et al. Effects of Elemental Chemical State in NiFe2O4@TiO2 on the Photocatalytic Performance[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2020, 35(2): 320-326.

[2]

Ferrighi L, Datteo M, Fazio G, et al. Catalysis under Cover: Enhanced Reactivity at the Interface between (Doped) Graphene and Anatase TiO2[J]. Journal of the American Chemical Society, 2016, 138(23): 7 365-7 376.

[3]

Li X, Bi W, Wang Z, et al. Surface-adsorbed Ions on TiO2 Nanosheets for Selective Photocatalytic CO2 Reduction[J]. Nano Research, 2018, 11(6): 3 362-3 370.

[4]

Wu KX, Zha WS, Chen XL. Photocatalytic Activity of TiO2 Coatings Fabricated on Al2O3 by Mechanical Coating Technique[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2021, 36(1): 1-5.

[5]

Wang RS, Qiu GH, Xiao Y, et al. Optimal Construction of WO3 Center Dot H2O/Pd/CdS ternary Z-scheme Photocatalyst with Remarkably Enhanced Performance for Oxidative Coupling of Benzylamines[J]. Journal of Catalysis, 2019, 374: 378-390.

[6]

Zhang X, Liu C, Wang M, et al. Improved Photocatalytic Performance of Anatase TiO2 Synthesized through Ethanol Supercritical Drying Technique[J]. Applied Organometallic Chemistry, 2019, 33(11): e5230

[7]

Liu G, Yin LC, Wang J, et al. A red Anatase TiO2 Photocatalyst for Solar Energy Conversion[J]. Energy & Environmental Science, 2012, 5(11): 9 603-9 610.

[8]

Zhou KF, Zhu YH, Yang XL, et al. Preparation of Graphene-TiO2 Composites with Enhanced Photocatalytic Activity[J]. New Journal of Chemistry, 2011, 35(2): 353-359.

[9]

Nalid NR, Majid A, Tahir MB, et al. Carbonaceous-TiO2 Nanomaterials for Photocatalytic Degradation of Pollutants: A Review[J]. Ceramics International, 2017, 43(17): 14 552-14 571.

[10]

Di Valentin C, Pacchioni G, Selloni A. Theory of Carbon Doping of Titanium Dioxide[J]. Chemistry of Materials, 2005, 17(26): 6656-6665.

[11]

Li YB, Zhang HM, Liu PR, et al. Cross-Linked g-C3N4/rGO Nanocomposites with Tunable Band Structure and Enhanced Visible Light Photocatalytic Activity[J]. Small, 2013, 9(19): 3 336-3 344.

[12]

Li X, Yu JG, Wageh S, et al. Graphene in Photocatalysis: A Review[J]. Small, 2016, 12(48): 6 640-6 696.

[13]

Liu SW, Yu JG, Jaroniec M. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets[J]. Journal of the American Chemical Society, 2010, 132(34): 11 914-11 916.

[14]

Liu YL, Wang SP, Xu SG, et al. Evident Improvement of Nitrogen-doped Graphene on Visible Light Photocatalytic Activity of N-TiO2/N-graphene Nanocomposites[J]. Materials Research Bulletin, 2015, 65: 27-35.

[15]

Putri LK, Ong WJ, Chang WS, et al. Heteroatom Doped Graphene in Photocatalysis: a Review[J]. Applied Surface Science, 2015, 358: 2-14.

[16]

Xu MS, Liang T, Shi MM, et al. Graphene-like Two-dimensional Materials[J]. Chemical Reviews, 2013, 113(5): 3 766-3 798.

[17]

Yin X, Zhang HL, Xu P, et al. Simultaneous N-doping of Reduced Graphene Oxide and TiO2 in the Composite for Visible Light Photodegradation of Methylene Blue with Enhanced Performance[J]. RSC Advances, 2013, 3(40): 18 474-18 481.

[18]

Tiido K, Alexeyeva N, Couillard M, et al. Graphene-TiO2 Composite Supported Pt Electrocatalyst for Oxygen Reduction Reaction[J]. Electrochimica Acta, 2013, 107: 509-517.

[19]

Murthy M, Tubaki S, Lokesh SV, et al. Co, N-Doped TiO2 Coated r-GO as a Photo Catalyst for Enhanced Photo Catalytic Activity[J]. Materials Today: Proceedings, 2017, 4(11): 11 873-11 881.

[20]

Li FY, Gu Q, Niu Y, et al. Hydrogen Evolution from Aqueous-phase Photocatalytic Reforming of Ethylene Glycol over Pt/TiO2 Catalysts: Role of Pt and Product Distribution[J]. Applied Surface Science, 2017, 391: 251-258.

[21]

Tang ZR, Zhang YH, Zhang N, et al. New Insight into the Enhanced Visible Light Photocatalytic Activity over Boron-doped Reduced Graphene Oxide[J]. Nanoscale, 2015, 7(16): 7 030-7 034.

[22]

Wang J, Tafen DN, Lewis JP, et al. Origin of Photocatalytic Activity of Nitrogen-doped TiO2 Nanobelts[J]. Journal of the American Chemical Society, 2009, 131(34): 12 290-12 297.

[23]

Xu Y, Mo YP, Tian J, et al. The synergistic Effect of Graphitic N and Pyrrolic N for the Enhanced Photocatalytic Performance of Nitrogen-doped Graphene/TiO2 Nanocomposites[J]. Applied Catalysis B: Environmental, 2016, 181: 810-817.

[24]

Khalid NR, Ahmed E, Hong ZL, et al. Nitrogen Doped TiO2 Nanoparticles Decorated on Graphene Sheets for Photocatalysis Applications[J]. Current Applied Physics, 2012, 12(6): 1 485-1 492.

[25]

Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible Light Absorption Ability and Photocatalytic Oxidation Activity of Various Interstitial N-doped TiO2 Prepared from Different Nitrogen Dopants[J]. Journal of Hazardous Materials, 2009, 168(1): 253-261.

[26]

Sato S. Photocatalytic Activity of NOx-doped TiO2 in the Visible Light Region[J]. Chemical Physics Letters, 1986, 123(1–2): 126-128.

[27]

Asahi R, Morikawa T, Ohwaki T, et al. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides[J]. Science, 2001, 293(5528): 269-271.

[28]

Livraghi S, Votta A, Paganini MC, et al. The Nature of Paramagnetic Species in Nitrogen Doped TiO2 Active in Visible Light Photocatalysis[J]. Chemical Communications, 2005 (4): 498–500

[29]

Lan K, Liu Y, Zhang W, et al. Uniform Ordered Two-dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-induced Solvent-confined Monomicelle Assembly[J]. Journal of the American Chemical Society, 2018, 140(11): 4 135-4 143.

[30]

Li S, Pan X, Wallis LK, et al. Comparison of TiO2 Nanoparticle and Graphene-TiO2 Nanoparticle Composite Phototoxicity to Daphnia Magna and Oryzias Latipes[J]. Chemosphere, 2014, 112: 62-69.

[31]

Jiang GD, Lin ZF, Chen C, et al. TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets with High Photocatalytic Activity for Removal of Pollutants[J]. Carbon, 2011, 49(8): 2 693-2 701.

[32]

Kumar B, Lee KY, Park HK, et al. Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators[J]. ACS Nano, 2011, 5(5): 4 197-4 204.

[33]

Shah MSAS, Park AR, Zhang K, et al. Green Synthesis of Biphasic TiO2-reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3 893-3 901.

[34]

Pan L, Liu YT, Xie XM, et al. Multi-dimensionally Ordered, Multi-functionally Integrated r-GO@TiO2(B)@Mn3O4 Yolk-membrane-shell Superstructures for Ultrafast Lithium Storage[J]. Nano Research, 2016, 9(7): 2 057-2 069.

[35]

Cao SY, Liu TG, Tsang YH, et al. Role of Hydroxylation Modification on the Structure and Property of Reduced Graphene Oxide/TiO2 Hybrids[J]. Applied Surface Science, 2016, 382: 225-238.

[36]

Li H, Shang J, Zhu H, et al. Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl[J]. ACS Catalysis, 2016, 6(12): 8 276-8 285.

[37]

Ramadoss A, Kim SJ. Improved Activity of a Graphene-TiO2 Hybrid Electrode in an Electrochemical Supercapacitor[J]. Carbon, 2013, 63: 434-445.

[38]

Mills A, Elliott N, Parkin IP, et al. Novel TiO2 CVD Films for Semiconductor Photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151(1–3): 171-179.

[39]

Alam U, Fleisch M, Kretschmer I, et al. One-step Hydrothermal Synthesis of Bi-TiO2 Nanotube/graphene Composites: an Efficient Photocatalyst for Spectacular Degradation of Organic Pollutants under Visible Light Irradiation[J]. Applied Catalysis B: Environmental, 2017, 218: 758-769.

[40]

Perera SD, Mariano RG, Vu K, et al. Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity[J]. ACS Catalysis, 2012, 2(6): 949-956.

[41]

Mousa MA, Khairy M, Mohamed HM. Dye-Sensitized Solar Cells Based on an N-Doped TiO2 and TiO2-Graphene Composite Electrode[J]. Journal of Electronic Materials, 2018, 47(10): 6 241-6 250.

[42]

Sheydaei M, Shiadeh HRK, Ayoubi-Feiz B, et al. Preparation of Nano N-TiO2/graphene Oxide/titan Grid Sheets for Visible Light Assisted Photocatalytic Ozonation of Cefixime[J]. Chemical Engineering Journal, 2018, 353: 138-146.

[43]

Pei FY, Xu SG, Zuo W, et al. Effective Improvement of Photocatalytic Hydrogen Evolution via a Facile in-situ Solvothermal N-doping Strategy in N-TiO2/N-graphene Nanocomposite[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6 845-6 852.

[44]

Wang GQ, Xing W, Zhuo SP. Nitrogen-doped Graphene as Low-cost Counter Electrode for High-efficiency Dye-sensitized Solar Cells[J]. Electrochimica Acta, 2013, 92: 269-275.

[45]

Zhao DL, Sheng GD, Chen CL, et al. Enhanced Photocatalytic Degradation of Methylene Blue under Visible Irradiation on Graphene@TiO2 Dyade Structure[J]. Applied Catalysis B: Environmental, 2012, 111: 303-308.

[46]

Wang R, Wu QD, Lu Y, et al. Preparation of Nitrogen-doped TiO2/graphene Nanohybrids and Application as Counter Electrode for Dye-sensitized Solar Cells[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2 118-2 124.

[47]

Pedrosa M, Pastrana-Martínez LM, Pereira MFR, et al. N/S-doped Graphene Derivatives and TiO2 for Catalytic Ozonation and Photocatalysis of Water Pollutants[J]. Chemical Engineering Journal, 2018, 348: 888-897.

[48]

Cheng XW, Yu XJ, Xing ZP. Characterization and Mechanism Analysis of N Doped TiO2 with Visible Light Response and Its Enhanced Visible Activity[J]. Applied Surface Science, 2012, 258(7): 3 244-3 248.

[49]

Zhang Y, Yang QG, Yang XY, et al. One-step Synthesis of in-situ N-doped Ordered Mesoporous Titania for Enhanced Gas Sensing Performance[J]. Microporous and Mesoporous Materials, 2018, 270: 75-81.

[50]

Liu C, Zhu X, Wang P, et al. Defects and Interface States Related Photocatalytic Properties in Reduced and Subsequently Nitridized Fe3O4/TiO2[J]. Journal of Materials Science & Technology, 2018, 34(6): 931-941.

[51]

Chen Z, Ma YQ, Geng BQ, et al. Photocatalytic Performance and Magnetic Separation of TiO2-functionalized γ-Fe2O3, Fe, and Fe/Fe2O3 Magnetic Particles[J]. Journal of Alloys and Compounds, 2017, 700: 113-121.

[52]

Yuan J, Chen MX, Shi JW, et al. Preparations and Photocatalytic Hydrogen Evolution of N-doped TiO2 from Urea and Titanium Tetrachloride[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1 326-1 331.

[53]

Wang M, Ma YQ, Sun X, et al. Building of CoFe2/CoFe2O4/MgO Architectures: Structure, Magnetism and Surface Functionalized by TiO2[J]. Applied Surface Science, 2017, 392: 1 078-1 087.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/