The Growth and Microstructure of GaAs Embedded with Al Nanocrystals

Xinming Wang , Jie Chen , Yong Zeng , Jia Li , Minjie Zhou , Weidong Wu , Dawei Yan

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1051 -1055.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1051 -1055. DOI: 10.1007/s11595-022-2632-x
Advanced Materials

The Growth and Microstructure of GaAs Embedded with Al Nanocrystals

Author information +
History +
PDF

Abstract

The preparation and the microstructure of GaAs embedded with Al nanocrystals prepared by Laser molecular beam epitaxy were investigated. The microstructure of the sample was observed by transmission electron microscope. The reflection high-energy electron diffraction (RHEED) pattern varied from the stripe pattern to the spot pattern at the beginning of the Al nanocrystals growth, and then the spot pattern tended to change to the stripe pattern. There was a large lattice mismatch between Al and GaAs substrate, and Al formed three-dimensional islands on the GaAs substrate, which led to the RHEED transformation into the spot pattern. Otherwise, the dislocations would be formed between the GaAs layer and Al islands due to the large lattice mismatch. Meanwhile, there was some polycrystal of GaAs around the Al islands.

Keywords

GaAs thin films / epitaxial growth / laser molecular beam epitaxy / film growth mechanism

Cite this article

Download citation ▾
Xinming Wang, Jie Chen, Yong Zeng, Jia Li, Minjie Zhou, Weidong Wu, Dawei Yan. The Growth and Microstructure of GaAs Embedded with Al Nanocrystals. Journal of Wuhan University of Technology Materials Science Edition, 2023, 37(6): 1051-1055 DOI:10.1007/s11595-022-2632-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vurgaftman I, Meyer JR, Ram-Mohna LR. Band Parameters for III–V Compound Semiconductors and Their Alloys[J]. J. Appl. Phys., 2001, 89: 5 815-5 875.

[2]

Luo H, Liu HC, Song CY, et al. Background-limited Terahertz Quantum-well Photodetector[J]. Appl. Phys. Lett., 2005, 86: 231103.

[3]

Wienold M, Schrottke L, Giehler M, et al. Low-threshold Terahertz Quantum-cascade Lasers Based on GaAs/Al0.5Ga0.75As Heterostructures[J]. Appl. Phys. Lett., 2010, 97: 071113.

[4]

Köck A, Gornik E, Hauser M, et al. Strongly Directional Emission From AlGaAs/GaAs Light-emitting Diodes[J]. Appl. Phys. Lett., 1990, 57: 2 327-2 329.

[5]

Köhler R, Tredicucci A, Beltram F, et al. Terahertz Semiconductor-heterostructure Laser[J]. Nature, 2002, 417: 156-159.

[6]

Williams BS, Kumar S, Hu Q, et al. High-power Terahertz Quantum-cascade Lasers[J]. Electron. Lett., 2006, 42: 89-90.

[7]

Kumar S, Hu Q, Reno JL. 186 K Operation of Terahertz Quantum-cascade Lasers Based on a Diagonal Design[J]. Appl. Phys. Lett., 2009, 94: 131105.

[8]

Yu CH, Zhang B, Lu W, et al. Strong Enhancement of Terahertz Response in GaAs/AlGaAs Quantum Well Photodetector by Magnetic Field[J]. Appl. Phys. Lett., 2010, 97: 022102.

[9]

Lin HC, Yang T, Sharifi H, et al. Enhancement-mode GaAs Metal-oxide-semiconductor High-electron-mobility Transistors with Atomic Layer Deposited Al2O3 as Gate Dielectric[J]. Appl. Phys. Lett., 2007, 91: 212101.

[10]

Jain SC, Roulston DJ. A Simple Expression for Band Gap Narrowing (BGN) in Heavily Doped Si, Ge, GaAs and GexSi1−x Strained Layers[J]. Solid State Electron., 1991, 34: 453-465.

[11]

Pearsall TP, Capasso F, Nahory RE, et al. The Band Structure Dependence of Impact Ionization by Hot Carriers in Semiconductors: GaAs [J]. Solid State Electron., 1978, 21: 297-302.

[12]

Murakami M. Development of Refractory Ohmic Contact Materials for Gallium Arsenide Compound Semiconductors[J]. Sci. Technol. Advanced Mater., 2002, 3: 1-27.

[13]

Sirtori C, Kruck P, Baibieri S, et al. GaAs/AlxGa1−x As Quantum Cascade Lasers[J]. Appl. Phys. Lett., 1998, 73: 3 486.

[14]

Sugawara H, Ishikawa M, Hatakoshi G. High-efficiency InGaAlP/GaAs Visible Light-emitting Diodes[J]. Appl. Phys. Lett., 2009, 58: 1 010-1 012.

[15]

Chuang LC, Sedgwick FG, Chen R, et al. GaAs-Based Nanoneedle Light Emitting Diode and Avalanche Photodiode Monolithically Integrated on a Silicon Substrate[J]. Nano Lett., 2011, 11: 385-390.

[16]

Atwater HA, Polman A. Plasmonics for Improved Photovoltaic Devices[J]. Nature Mater., 2010, 9: 205-213.

[17]

Ferri FA, Coelho LN, Kunets VP, et al. Structural, Morphological, and Magnetic Characterization of In1−xMxAs Quantum Dots Grown by Molecular Beam Epitaxy[J]. J. Appl. Phys., 2012, 112: 034317.

[18]

Li FS, Kim TW. Formation and Electrical Bistability Properties of ZnO Nanogranules Embedded in Polyimide Nanocomposites Sandwiched Between Two Layers[J]. Appl. Phys. Lett., 2008, 92: 011906.

[19]

Yuan CL, Lee PS, Ye SL. Formation, Photoluminescence and Charge Storage Characteristics of Au Nanocrystals Embedded in Amorphous Al2A3 Matrix[J]. Europhys. Lett., 2007, 80: 67 003.

[20]

Kuo KY, Hsu SW, Huang PR, et al. Optical Properties and Sub-band-gap Formation of Nano-crystalline Si Quantum Dots Embedded ZnO Thin Film[J]. Opt. Express, 2012, 20: 10 470-10 475.

[21]

Yan DW, Wu WD, Zhang HL, et al. Surface Chemistry and Growth Mechanisms Studies of Homo Epitaxial (100) GaAs by Laser Molecular Beam Epitaxy[J]. Appl. Surf. Sci., 2011, 258: 1 417-1 421.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/