Study of Shifted UV Emission Peak of ZnO Nanowire Arrays

Liqing Liu , Yongtao Li , Xuemin He , Hongguang Zhang , Jianping Shen

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1048 -1050.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1048 -1050. DOI: 10.1007/s11595-022-2631-y
Advanced Materials

Study of Shifted UV Emission Peak of ZnO Nanowire Arrays

Author information +
History +
PDF

Abstract

We have obtained vertically aligned ZnO nanowire arrays synthesized by microwave-assisted heating method with different growth time. From the room-temperature PL measurement, the strong deep-level emission and weak near band edge (NBE) emission can be seen. The deep-level emissions became weaker and deep-level emissions became stronger when the samples were annealed at 300 °C for 30 min, meanwhile, the NBE emission peaks get red-shifted with growth time, and the longer the growth time, the more the peak shifting. This phenomenon can be attributed that the diameter of ZnO nanowires increases with growth time. This PL emission phenomenon is important in research of optoelectronic application.

Keywords

ZnO nanowire arrays / photoluminescence property / red shift / different growth time

Cite this article

Download citation ▾
Liqing Liu, Yongtao Li, Xuemin He, Hongguang Zhang, Jianping Shen. Study of Shifted UV Emission Peak of ZnO Nanowire Arrays. Journal of Wuhan University of Technology Materials Science Edition, 2023, 37(6): 1048-1050 DOI:10.1007/s11595-022-2631-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng MF, Wen Z, Shao MW, et al. One-Dimensional CdSxSe1−x Nanoribbons for High-performance Rigid and Flexible Photodetectors[J]. J. Mater. Chem. C, 2017, 5: 7 521-7 526.

[2]

An QW, Liu Y, Jiang RJ, et al. Chemical Vapor Deposition Growth of ReS2 Nanowires for High-Performance Nanostructured Photodetector[J]. Nanoscale, 2018, 10: 14 976-14 983.

[3]

Thomele D, Bourret GR, Bernardi J, et al. Hydroxylation Induced Alignment of Metal Oxide Nanocubes[J]. Angew. Chem. Int. Ed., 2016, 55: 1-5.

[4]

Greil J, Assali S, Isono Y, et al. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires[J]. Nano Lett., 2016, 16: 3 703-3 709.

[5]

Varadhan P, Fu HC, Priante D, et al. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting[J]. Nano Lett., 2017, 17: 1 520-1 528.

[6]

Singh MK, Pandey RK, Prakash R. High-Performance Photo Detector Based on Hydrothermally Grown SnO2 Nanowire/Reduced Graphene Oxide (rGO) Hybrid Material[J]. Org. Electron., 2017, 50: 359-366.

[7]

Sinha M, Mahapatra R, Mondal B, et al. Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal Technique[J]. J. Phys. Chem. C, 2016, 120: 3 019-3 025.

[8]

Wang GM, Xiao XH, Li WQ, et al. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO2 Nanowire Arrays by Nitrogen Implantation[J]. Nano Lett., 2015, 15: 4 692-4 698.

[9]

Li X, Dai SM, Zhu P, et al. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays[J]. ACS Appl. Mater. Interfaces, 2016, 8: 21 358-21 365.

[10]

Xu S, Xu C, Liu Y, et al. Ordered Nanowire Array Blue/Near-UV Light Emitting Diodes[J]. Adv. Mater., 2010, 22: 4 749-4 753.

[11]

Kim JY, Jeong H, Jang DJ. Hydrothermal Fabrication of Well-Ordered ZnO Nanowire Arrays on Zn Foil: Room Temperature Ultraviolet Nanolasers[J]. J. Nanopart. Res., 2011, 13: 6 699-6 706.

[12]

Das SN, Moon KJ, Kar JP, et al. ZnO Single Nanowire-based UV Detectors[J]. Appl. Phys. Lett., 2010, 97: 022 103.

[13]

Shi ZF, Zhang YT, Cui XJ, et al. Photoluminescence Performance Enhancement of ZnO/MgO Heterostructured Nanowires and Their Applications in Ultraviolet Laser Diodes[J]. Phys. Chem. Chem. Phys., 2015, 17: 13 813-13 820.

[14]

Lupan O, Pauporté T, Viana B, et al. Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication[J]. ACS Appl. Mater. Inter., 2010, 2: 2 083-2 090.

[15]

Shasti M, Dariani RS. Study of Growth Time and Post Annealing Effect on the Performance of ZnO Nanorods Ultraviolet Photodetector[J]. J. Appl. Phys., 2017, 121: 064 503.

[16]

Guo HW, Ding R, Li N, et al. Defects Controllable ZnO Nanowire Arrays by a Hydrothermal Growth Method for Dye-Sensitized Solar Cells[J]. Physica E, 2019, 105: 156-161.

[17]

Kayanuma Y. Quantum-Size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape[J]. Phys. Rev. B, 1988, 38: 9 797.

[18]

Kim KK, Koguchi N, Ok YW, et al. Fabrication of ZnO Quantum Dots Embedded in an Amorphous Oxide Layer[J]. Appl. Phys. Lett., 2004, 84: 3 810.

[19]

Özgür Ü, Alivov Y I, Liu C, et al. Comprehensive Review of ZnO Materials and Devices[J]. J. Appl. Phys., 2005, 98: 041 301.

[20]

Meyer BK, Alves H, Hofmann DM, et al. A Comprehensive Review of ZnO Materials and Devices[J]. Phys. Stat. Sol. (b), 2004, 241: 231-260.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/