Synthesis Approach and Adsorption Properties of SiOC Nanocomposite by Chitin Templating

Yaoxuan Huang , Hang Ping , Kun Wang , Zhengyi Fu

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1041 -1047.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1041 -1047. DOI: 10.1007/s11595-022-2630-z
Advanced Materials

Synthesis Approach and Adsorption Properties of SiOC Nanocomposite by Chitin Templating

Author information +
History +
PDF

Abstract

Using chitin as the templating material, we obtained layered nanocomposites like shrimp or crab shells via a sol-gel self-assembly process. SEM images show a layered structure and XRD patterns present a typical peak of chitin, which indicates the templating role of chitin in the as-received hybrid samples. Additionally, the layer spacing of chitin/silica hybrid materials is reduced with increasing content of silica. After the heat treatment for carbonization, layered SiOC nanocomposites with mesoporous structures were obtained and showed good dye adsorption performance. The present study demonstrates a reliable and self-assembly synthesis technique for the development of advanced high-performance nanocomposites with biomimetic nanostructures.

Keywords

chitin / sol-gel method / self-assembly / biomimetic structure / SiOC nanocomposite

Cite this article

Download citation ▾
Yaoxuan Huang, Hang Ping, Kun Wang, Zhengyi Fu. Synthesis Approach and Adsorption Properties of SiOC Nanocomposite by Chitin Templating. Journal of Wuhan University of Technology Materials Science Edition, 2023, 37(6): 1041-1047 DOI:10.1007/s11595-022-2630-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zan G, Wu Q. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures[J]. Advanced Materials, 2016, 28(11): 2 099-2 147.

[2]

Wegst UGK, Bai H, Saiz E, et al. Bioinspired Structural Materials[J]. Nature Materials, 2015, 14(1): 23-36.

[3]

Boelmann F, Romano P, Fabritius H, et al. The Composition of the Exoskeleton of Two Crustacea: The American Lobster Homarus Americanus and the Edible Crab Cancer Pagurus[J]. Thermochimica Acta, 2007, 463(1–2): 65-68.

[4]

Nair KG, Dufresne A. Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 2. Mechanical Behavior[J]. Biomacromolecules, 2003, 4(3): 666-674.

[5]

George S, Varughese KT, Thomas S. Molecular Transport of Aromatic Solvents in Isotactic Polypropylene/Acrylonitrile-co-butadiene Rubber Blends[J]. Polymer, 2000, 41(2): 579-594.

[6]

Tzoumaki M, Moschakis T, Biliaderis CG. Mixed Aqueous Chitin Nanocrystal-whey Protein Dispersions: Microstructure and Rheological Behaviour[J]. Food Hydrocolloids, 2011, 25(5): 935-942.

[7]

Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized Cellulose Nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.

[8]

Saito T, Nishiyama Y, Putaux JL, et al. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-catalyzed Oxidation of Native Cellulose[J]. Biomacromolecules, 2006, 7(6): 1 687-1 691.

[9]

Saito T, Kimura S, Nishiyama Y, et al. Cellulose Nanofibers Prepared by TEMPO-mediated Oxidation of Native Cellulose[J]. Biomacromolecules, 2007, 8(8): 2 485

[10]

Saito T, Hirota M, Tamura N, et al. Individualization of Nano-sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions[J]. Biomacromolecules, 2009, 10(7): 1 992-1 996.

[11]

Raabe D, Romano P, Sachs C, et al. Microstructure and Crystallographic Texture of the Chitin-protein Network in the Biological Composite Material of the Exoskeleton of the Lobster Homarus Americanus[J]. Materials Science & Engineering A, 2006, 421(1–2): 143-153.

[12]

Chen P, Lin YM, Mckittrick J, et al. Structure and Mechanical Properties of Crab Exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596.

[13]

Giraud-Guille MM. Fine Structure of the Chitin-protein System in the Crab Cuticle[J]. Tissue and Cell, 1984, 16(1): 75-92.

[14]

Raabe D, Sachs C, Romano P. The Crustacean Exoskeleton as An Example of a Structurally and Mechanically Graded Biological Nanocomposite Material[J]. Acta Materialia, 2005, 53(15): 4 281-4 292.

[15]

Ifuku S, Saimoto H. Chitin Nanofibers: Preparations, Modifications, and Applications[J]. Nanoscale, 2012, 4(11): 3 308-3 318.

[16]

Hassanzadeh P, Kharaziha M, Nikkhah M, et al. Chitin Nanofiber Micropatterned Flexible Substrates for Tissue Engineering[J]. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(34): 4 217-4 224.

[17]

Bazhenov VV, Wysokowski M, Petrenko I, et al. Preparation of Monolithic Silica-chitin Composite under Extreme Biomimetic Conditions[J]. International Journal of Biological Macromolecules, 2015, 76: 33-38.

[18]

Larry L, Jon KW. The Sol-gel Process[J]. Chem. Rev., 1990, 90: 33-70.

[19]

Stober W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Journal of Colloid & Interface Science, 1968, 26(1): 62-69.

[20]

Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD and Ashley CS. Sol-gel Transition in Simple Silicates II[J]. Journal of Non-Crystalline Solids, 1984

[21]

Brinker CJ, Keefer KD, Schaefer DW, Ashley CS. Sol-gel Transition in Simple Silicates[J]. Journal of Non Crystalline Solids, 1982, 48: 47-64.

[22]

Schmidt H, Scholze H, Kaiser A. Principles of Hydrolysis and Condensation Reaction of Alkoxysilanes[J]. Journal of Non-Crystalline Solids, 1984, 63(1–2): 1-11.

[23]

Brinker CJ, Scherer G. Sol → Gel → Glass: I. Gelation and Gel Structure[J]. Journal of Non-Crystalline Solids, 1985, 70(3): 301-322.

[24]

Jerzy C, Ludomir S. Synthesis of Nanosilica by the Sol-gel Method and Its Activity Toward Polymers[J]. Materials Science, 2003, 21(4): 461-469.

[25]

Dotto GL, Santos JMN, Rodrigues IL, et al. Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin[J]. Journal of Colloid & Interface Science, 2015, 446: 133-140.

[26]

Rao V, Rao S. Adsorption Studies on Treatment of Textile Dyeing Industrial Effluent by Flyash[J]. Chemical Engineering Journal, 2006, 116(1): 77-84.

[27]

Banat F, Al-Asheh S, Al-Ahmad R, et al. Bench-scale and Packed Bed Sorption of Methylene Blue Using Treated Olive Pomace and Charcoal[J]. Bioresour Technol., 2007, 98(16): 3 017-3 025.

[28]

Zhao M, Tang Z, Liu P. Removal of Methylene Blue from Aqueous Solution with Silica Nano-sheets Derived from Vermiculite[J]. Journal of Hazardous Materials, 2008, 158(1): 43-51.

[29]

Zhou L, Huang J, He B, et al. Peach Gum for Efficient Removal of Methylene Blue and Methyl Violet Dyes from Aqueous Solution[J]. Carbohydrate Polymers, 2014, 101: 574-581.

[30]

Removal of Methylene Blue from Aqueous Solution Using by Untreated Lignite as Potential Low-cost Adsorbent: Kinetic, Thermodynamic and Equilibrium Approach[J]. Journal of Water Process Engineering, 2014, 2: 10–21

[31]

Guo R, Wilson LD. Synthetically Engineered Chitosan-based Materials and Their Sorption Properties with Methylene Blue in Aqueous Solution[J]. Journal of Colloid & Interface Science, 2012, 388(1): 225-234.

[32]

Liu T, Li Y, Du Q, et al. Adsorption of Methylene Blue from Aqueous Solution by Graphene[J]. Colloids Surf B Biointerfaces, 2012, 90: 197-203.

[33]

Bulut Y, Aydn H. A kinetics and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells[J]. Desalination, 2006, 194(1–3): 259-267.

[34]

Chen H, Jie Z, Dai G. Silkworm Exuviae—a new Non-conventional and Low-cost Adsorbent for Removal of Methylene Blue from Aqueous Solutions[J]. Journal of Hazardous Materials, 2011, 186(2–3): 1 320-1 327.

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/