Effect of Cu/Zn Substitution in MgO Nanostructures for Tuning the Optical Bandgap and Structural Properties

Dawar Atif , Shah S Naseem , Siddiqui M Asif , Bibi Yasmeen

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1035 -1040.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 37 ›› Issue (6) : 1035 -1040. DOI: 10.1007/s11595-022-2629-5
Advanced Materials

Effect of Cu/Zn Substitution in MgO Nanostructures for Tuning the Optical Bandgap and Structural Properties

Author information +
History +
PDF

Abstract

Low cost co-precipitation method was used to synthesize Cu (0–0.05) doped MgO samples with fixed concertation of Zn=0.01. X-ray diffraction (XRD) spectra confirmed the phase purity of the samples for 0⩽Cu⩽0.03 doping concentration. The secondary phase for 0.04⩽Cu⩽0.05 exhibited the formation of mixed metal oxides. The crystallite size was found to increase from 17.5 to 23.5 nm for 0⩽Cu⩽0.03 and then decreased from 22 to 18.5 nm for 0.04⩽Cu⩽0.05. The estimated bandgap first reduced from 5.48 to 4.88 eV and then increased from 5.21 to 5.36 eV. The morphology of the samples transformed from spheroidal shape to star-like shape. The obtained results reveal that the structural and optical property are in good agreement with the morphological transition. The peak shifting towards the lower values of vibrational frequency from 694 to 579 cm−1 confirms the incorporation of Cu/Zn in Mg-O lattice. The tuning of optical bandgap and structural properties with varying dopant concentration in MgO nanomaterials can be used for multifunctional modern energy storage and optoelectronic devices.

Keywords

Cu/Zn doping / MgO / optical bandgap / morphology / vibrational modes

Cite this article

Download citation ▾
Dawar Atif, Shah S Naseem, Siddiqui M Asif, Bibi Yasmeen. Effect of Cu/Zn Substitution in MgO Nanostructures for Tuning the Optical Bandgap and Structural Properties. Journal of Wuhan University of Technology Materials Science Edition, 2023, 37(6): 1035-1040 DOI:10.1007/s11595-022-2629-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reynolds DC, Look DC, Jogai B. Optically Pumped Ultraviolet Lasing from ZnO[J]. Solid State Commun., 1996, 99(12): 873-875.

[2]

Ohta H, Kawamura KI, Orita M, et al. Current injection Emission from a Transparent p-n Junction Composed of p-SrCu2O2n-ZnO[J]. Appl. Phys. Lett. Lett., 2000, 77(4): 475-477.

[3]

Oh JY, Lim SC, Ahn SD, et al. Facile One-step Synthesis of Magnesium-doped ZnO Nanoparticles: Optical Properties and Their Device Applications[J]. J. Phys. D: Appl. Phys., 2013, 46(28): 285 101

[4]

Ghashang M, Mansoor SS, Mohammad Shafiee MR, et al. Green Chemistry Preparation of MgO Nanopowders: Efficient Catalyst for the Synthesis of Thiochromeno[4,3-b]pyran and Thiopyrano[4,3-b] Pyran Derivatives[J]. J. Sulfur Chem., 2016, 37(4): 377-390.

[5]

Huang L, Li DQ, Lin YJ, et al. Controllable Preparation of Nano-MgO and Investigation of Its Bactericidal Properties[J]. J. Inorg. Bichem., 2005, 99(5): 986-987.

[6]

Ouraipryvan P, Sreethawong T, Chavadej S. Synthesis of Crystalline MgO Nanoparticle with Mesoporous-assembled Structure via a Surfactant-modified Sol-gel Process[J]. Mater. Lett., 2009, 63(21): 1 862-1 865.

[7]

Lu L, Zhang L, Zhang X, et al. A MgO Nanoparticles Composite Matrix-based Electrochemical Biosensor for Hydrogen Peroxide with High Sensitivity[J]. Electroanalysis: An Int. J. of Devoted to Fund. & Practical Aspects of Electroanalysis, 2010, 22(4): 471-477.

[8]

Umar A, Rahman MM, Hahn YB. MgO Polyhedral Nanocages and Nanocrystals based Glucose Biosensor[J]. Electrochem. Commun., 2009, 11(7): 1 353-1 357.

[9]

Selvamani T, Sinhamahapatra A, Bhattacharjya D, et al. Rectangular MgO Microsheets with Strong Catalytic Activity[J]. Mater. Chem. Phys., 2011, 129(3): 853-861.

[10]

Suresh S, Arivuoli D. Synthesis and Characterization of Pb+ Doped MgO Nanocrystalline Particles[J]. Digest J. Nanomater & Biostruct., 2011, 6(4): 1 597-1 603.

[11]

Nagappa B, Chandrappa GT. Mesoporous Nanocrystalline Magnesium Oxide for Environmental Remediation[J]. Microporous Mesoporous Mater., 2007, 106(1–3): 212-218.

[12]

Blochwitz J, Fritz T, Pfeiffer M, et al. Interface Electronic Structure of Organic Semiconductors with Controlled Doping Levels[J]. Organ. Electron., 2001, 2(2): 97-104.

[13]

Kumar S, Alharthi FA, Ahmed F, et al. Role of Fe Doping on Surface Morphology, Electronic Structure and Magnetic Properties of Fe Doped CeO2 Thin Film[J]. Ceram. Int., 2021, 47(3): 4 012-4 019.

[14]

Yu HK. Secondary Electron Emission Properties of Zn-doped MgO Thin Films Grown via Electron-beam Evaporation[J]. Thin Solid Films, 2018, 653: 57-61.

[15]

Yoshikawa A, Matsunami H, Nanishi Y. Development and Applications of Wide Bandgap Semiconductors[M], 2007 Berlin, Heidelberg: Springer. 1-24.

[16]

Lian J, Zhang C, Li Q, Ng DH. Mesoporous (ZnO)x(MgO)1−x Nanoplates: Template-free Solvothermal Synthesis, Optical Properties, and Their Applications in Water Treatment[J]. Nanoscale, 2013, 5(23): 11 672-11 678.

[17]

Shimpi P, Gao PX, Goberman DG, Ding Y. Low Temperature Synthesis and Characterization of MgO/ZnO Composite Nanowire Arrays[J]. Nanotechnology, 2009, 20(12): 125 608

[18]

Li LX, Xu D, Li XQ, et al. Excellent Fluoride Removal Properties of Porous Hollow MgO Microspheres[J]. New J. Chem., 2014, 38(11): 5 445-5 452.

[19]

Lee HJ, Kim BS, Cho CR, Jeong SY. A Study of Magnetic and Optical Properties of Cu-doped ZnO[J]. Phys. Status Solidi B., 2004, 241(7): 1 533-1 536.

[20]

Alqadi MK, Migdadi AB, Alzoubi FY, et al. Influence of (Ag-Cu) Co-doping on the Optical, Structural, Electrical, and Morphological Properties of ZnO Thin Films[J]. J. Solgel. Sci. Technol., 2022, 1–16

[21]

Wang B, Tang L, Peng S, et al. Structural, Optical and Electrical Properties of Li-doped ZnO Thin Films Influenced by Annealing Temperature[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2014, 29(5): 873-876.

[22]

Cui H, Wu X, Chen Y, et al. Influence of Copper Doping on Adsorption and Antibacterial Behaviour of MgO Prepared by Co-precipitation[J]. Mater. Res. Bull., 2015, 61: 511-518.

[23]

Ye LH, Freeman AJ, Delley B. Half-metallic Ferromagnetism in Cu-doped ZnO: Density Functional Calculations[J]. Phys. Rev. B, 2006, 73(3): 033203

[24]

Muthukumaran S, Gopalakrishnan R. Structural, FTIR and Photoluminescence Studies of Cu Doped ZnO Nanopowders by Co-precipitation Method[J]. Opt. Mater., 2012, 34(11): 1 946-1 953.

[25]

Ahmed F, Kumar S, Arshi N, et al. Morphological Evolution between Nanorods to Nanosheets and Room Temperature Ferromagnetism of Fe-doped ZnO Nanostructures[J]. Cryst. Eng. Comm., 2012, 14(11): 4 016-4 026.

[26]

Singh AK. Synthesis, Characterization, Electrical and Sensing Properties of ZnO Nanoparticles[J]. Adv. Powder Technol., 2010, 21(6): 609-613.

[27]

Ashar A, Iqbal M, Bhatti IA, et al. Synthesis, Characterization and Photocatalytic Activity of ZnO Flower and Pseudo-sphere: Nonylphenol Ethoxylate Degradation under UV and Solar Irradiation[J]. J. Alloys Compd., 2016, 678: 126-136.

[28]

Tauc J, Grigorovici R, Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium[J]. Phys. Status Solidi B, 1966, 15(2): 627-637.

[29]

Kadam AN, Kim TG, Shin DS, et al. Morphological Evolution of Cu Doped ZnO for Enhancement of Photocatalytic Activity[J]. J. Alloys Compd., 2017, 710: 102-113.

[30]

Dai J, Suo Z, Li Z, et al. Effect of Cu/Al Doping on Electronic Structure and Optical Properties of ZnO[J]. Results Phys., 2019, 15: 102649.

[31]

Khan SA, Khan NZ, Xie Y, et al. Development of Narrow Band Emitting Phosphors for Backlighting Displays and Solid State Lighting Using a Clean and Green Energy Technology[J]. J. Lumin., 2022, 243: 118 650.

[32]

Ferhat M, Zaoui A, Ahuja R. Magnetism and Band Gap Narrowing in Cu-doped ZnO[J]. Appl. Phys. Lett., 2009, 94(14): 142 502

[33]

Rama Krishna MV, Friesner RA. Quantum Confinement Effects in Semiconductor Clusters[J]. J. Chem. Phys., 1991, 95(11): 8 309-8 322.

[34]

Tosun M, Senol SD, Arda L. Effect of Mn/Cu Co-doping on the Structural, Optical and Photocatalytic Properties of ZnO Nanorods[J]. J. Mol. Struct., 2020, 1212: 128 071.

[35]

Raja K, Ramesh PS, Geetha D. Structural, FTIR and Photoluminescence Studies of Fe Doped ZnO Nanopowder by Co-precipitation Method[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 131: 183-188.

[36]

Ashokkumar M, Muthukumaran S. Microstructure, Optical and FTIR Studies of Ni, Cu Co-doped ZnO Nanoparticles by Co-precipitation Method[J]. Opt. Mater., 2014, 37: 671-678.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/