Influence of Associated Cations on the Transport and Adsorption of Chloride Ions in the Nano-channel of Calcium Aluminosilicate Hydrate Gel: A Molecular Dynamics Study

Jun Yang , Gaozhan Zhang , Qingjun Ding , Aiguo Wang , Dongshuai Hou

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 963 -976.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 963 -976. DOI: 10.1007/s11595-022-2619-7
Cementitious Materials

Influence of Associated Cations on the Transport and Adsorption of Chloride Ions in the Nano-channel of Calcium Aluminosilicate Hydrate Gel: A Molecular Dynamics Study

Author information +
History +
PDF

Abstract

Molecular dynamics simulation was utilized to investigate the transport and adsorption of chloride in the nanopore of calcium aluminosilicate hydrate (C-A-S-H) with associated cation types of Ca, Mg, Na and K. The local ionic structure, atomic dynamics and bond stability were analyzed to elucidate the interaction between cations and chloride ions. The results show that interfacial chloride is absorbed through the ion pairing formation in the vicinity of C-A-S-H substrate. Interfacial cations can simultaneously interact aluminosilicate chains, water molecules and Cl ions, which restrict the motion of interfacial Cl ions. Pore solution chloride can be immobilized through the solvation effect of cations. Cations along with their hydration shell can connect to neighboring Cl ions to decrease their mobility. Owing to the varied ionic chemistry, cations show different interaction strength with neighboring water molecules and anions, which determines the chloride transport behavior in the nanopore of C-A-S-H. The chloride immobilization capacity of C-A-S-H nanopore with different associated cations is listed in following order: Mg2+<Ca2+<Na+≈K+, which agrees reasonably with previous experiments.

Keywords

calcium aluminosilicate hydrate / nanometer channel confinement / chloride immobilization / associated cations / ionic structure

Cite this article

Download citation ▾
Jun Yang, Gaozhan Zhang, Qingjun Ding, Aiguo Wang, Dongshuai Hou. Influence of Associated Cations on the Transport and Adsorption of Chloride Ions in the Nano-channel of Calcium Aluminosilicate Hydrate Gel: A Molecular Dynamics Study. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(5): 963-976 DOI:10.1007/s11595-022-2619-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mehta P K, Monteiro P. Concrete: Microstructure, Properties, and Materials[M], 2013 Prentice-Hall: Englewood Cliffs.

[2]

Xu L. Durability Design of Concrete Structures in Severe Environments[J]. Key Engineering Materials, 2014, 629–630: 218-222.

[3]

Mindess S, Yong J, Darwin D. Concrete(2th edition.)[M], 2002 Prentice Hall: Englewood Cliffs.

[4]

Berodier E, Scrivener K L. Evolution of Pore Structure in Blended Systems[J]. Cement and Concrete Research, 2015, 73: 25-35.

[5]

Weerdt K D, Colombo A, Coppola L, et al. Impact of the Associated Cation on Chloride Binding of Portland Cement Paste[J]. Cement and Concrete Research, 2015, 68: 196-202.

[6]

Wang P, Ferguson M M, Eng G, et al. 1H Nuclear Magnetic Resonance Characterization of Portland Cement: Molecular Diffusion of Water Studied by Spin Relaxation and Relaxation Time-Weighted Imaging[J]. Journal of Materials Science, 1998, 33(12): 3 065-3 071.

[7]

Greener J, Peemoeller H, Choi C, et al. Monitoring of Hydration of White Cement Paste with Proton NMR Spin—Spin Relaxation[J]. Journal of the American Ceramic Society, 2010, 83(3): 623-627.

[8]

Bordallo H N, Aldridge L P, Desmedt A. Water Dynamics in Hardened Ordinary Portland Cement Paste or Concrete: From Quasielastic Neutron Scattering[J]. Journal of Physical Chemistry B, 2006, 110(36): 17 966-17 976.

[9]

Korb J P, Monteilhet L, Mcdonald P J, et al. Microstructure and Texture of Hydrated Cement-Based Materials: A Proton Field Cycling Relaxometry Approach[J]. Cement and Concrete Research, 2007, 37(3): 295-302.

[10]

Ramachandran V S. Kinetics of Hydration of Tricalcium Silicate in Presence of Calcium Chloride by Thermal Methods[J]. Thermochimica Acta, 1971, 2(1): 41-55.

[11]

Barberon F Véronique Baroghel-BounyHélène Zanni Interactions Between Chloride and Cement-Paste Materials[J]. Magnetic Resonance Imaging, 2005, 23(2): 267-272.

[12]

Yu P, Kirkpatrick R J. 35Cl NMR Relaxation Study of Cement Hydrate Suspensions[J]. Cement and Concrete Research, 2001, 31(10): 1 479-1 485.

[13]

Plusquellec G, Nonat A. Interactions Between Calcium Silicate Hydrate (C-S-H) and Calcium Chloride, Bromide and Nitrate[J]. Cement and Concrete Research, 2016, 90: 89-96.

[14]

Pellenq J M, Kushima A, Shahsavari R, et al. A Realistic Molecular Model of Cement Hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16 102-16 107.

[15]

Youssef M, Pellenq J M, Yildiz B. Glassy Nature of Water in an Ultraconfining Disordered Material: The Case of Calcium-Silicate-Hydrate[J]. Journal of the American Chemical Society, 2011, 133(8): 2 499-2 510.

[16]

Cygan R T, Liang J J, Kalinichev A G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1 255-1 266.

[17]

Hou D, Li Z. Molecular Dynamics Study of Water and Ions Transport in Nano-Pore of Layered Structure: A Case Study of Tobermorite[J]. Microporous & Mesoporous Materials, 2014, 195: 9-20.

[18]

Hou D, Li Z, Zhang P, et al. Molecular Structure and Dynamics of an Aqueous Sodium Chloride Solution in Nano-pores between Portlandite Surfaces: A Molecular Dynamics Study[J]. Physical Chemistry Chemical Physics, 2016, 18(3): 2 059-2 069.

[19]

Yang J, Hou D, Ding Q. Structure, Dynamics and Mechanical Properties of Cross-linked Calcium Aluminosilicate Hydrate: A Molecular Dynamics Study[J]. ACS Sustainable Chemistry and Engineering., 2018, 6(7): 9 403-9 417.

[20]

Hou D, Li T. Influence of Aluminates on the Structure and Dynamics of Water and Ions in the Nanometer Channel of Calcium Silicate Hydrate (C—S—H) Gel[J]. Physical Chemistry Chemical Physics Pccp, 2018, 20(4): 2 373-2 387.

[21]

Hou D, Li Z. Molecular Dynamics Study of Water and Ions Transported During the Nanopore Calcium Silicate Phase: Case Study of Jennite[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 930-940.

[22]

Zhou Y, Hou D, Jiang J, et al. Chloride Ions Transport and Adsorption in the Nano-Pores of Silicate Calcium Hydrate: Experimental and Molecular Dynamics Studies[J]. Construction and Building Materials, 2016, 126: 991-1 001.

[23]

Weerdt K D, Orsáková D, Geiker M R. The Impact of Sulphate and Magnesium on Chloride Binding in Portland Cement Paste[J]. Cement & Concrete Research, 2014, 65(11): 30-40.

[24]

Zhou Y, Hou D, Jiang J, et al. Experimental and Molecular Dynamics Studies on the Transport and Adsorption of Chloride Ions in the Nano-Pores of Calcium Silicate Phase: The Influence of Calcium to Silicate Ratios[J]. Microporous & Mesoporous Materials, 2017, 255: 23-35.

[25]

Lothenbach B, Scrivener K, Hooton R D. Supplementary Cementitious Materials[J]. Cement and Concrete Research, 2011, 41(12): 217-229.

[26]

Girao A V, Richardson I G, Porteneuve C B, et al. Composition, Morphology and Nanostructure of C—S—H in White Portland Cement Pastes Hydrated at 55 °C[J]. Cement and Concrete Research, 2007, 37(12): 1 571-1 582.

[27]

Ding Q, Yang J, Zhang G, et al. Effect of Magnesium on the C-S-H Nanostructure Evolution and Aluminate Phases Transition in Cement-Slag Blend[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(1): 108-116.

[28]

Hou D, Hu C, Li Z. Molecular Simulation of the Ions Ultraconfined in the Nanometer-Channel of Calcium Silicate Hydrate: Hydration Mechanism, Dynamic Properties, and Influence on the Cohesive Strength[J]. Inorganic Chemistry, 2017, 56(4): 1 881-1 896.

[29]

Vollpracht A, Lothenbach B, Snellings R, et al. The Pore Solution of Blended Cements: A Review[J]. Materials & Structures, 2016, 49(8): 3 341-3 367.

[30]

Van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: A Reactive Force Field for Hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9 396-9 409.

[31]

Senftle T P, Hong S, Islam M M, et al. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions[J]. Npj Computational Mathematics, 2016, 2: 15 011.

[32]

Yang J, Hou D, Ding Q. Ionic Hydration Structure, Dynamics and Adsorption Mechanism of Sulfate and Sodium Ions in the Surface of Calcium Silicate Hydrate Gel: A Molecular Dynamics Study[J]. Applied Surface Science, 2018, 448: 559-570.

[33]

Aaqvist J. Ion-Water Interaction Potentials Derived from Free Energy Perturbation Simulations[J]. Journal of Physical Chemistry, 1990, 94(21): 8 021-8 024.

[34]

Callahan K M, Casillas-Ituarte N N, Roeselova M, et al. Solvation of Magnesium Dication: Molecular Dynamics Simulation and Vibrational Spectroscopic Study of Magnesium Chloride in Aqueous Solutions[J]. The Journal of Physical Chemistry A, 2010, 114(15): 5 141-5 148.

[35]

Zhang Y, Li T, Hou D, et al. Insights on Magnesium and Sulfate Ions’ Adsorption on the Surface of Sodium Alumino-Silicate Hydrate (NASH) Gel: A Molecular Dynamics Study[J]. Physical Chemistry Chemical Physics Pccp, 2018, 20(27): 18 297

[36]

Hamid S A. The Crystal Structure of the 11 Natural Tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O[J]. Zeitschrift für Kristallographie — Crystalline Materials, 1981, 154(1–4): 189-198.

[37]

Haas J, Nonat A. From C—S—H to C—A—S—H: Experimental Study and Thermodynamic Modelling[J]. Cement and Concrete Research, 2015, 68: 124-138.

[38]

Yang J, Zhang G, Ding Q, et al. The Molecular Structure and Mechanical Properties of Aluminum Substituted C-S-H[J]. Journal of Building Materials, 2022, 25(6): 565-571.

[39]

Andersson K, Allard B, Bengtsson M, et al. Chemical Composition of Cement Pore Solutions[J]. Cement and Concrete Research, 1989, 19(3): 327-332.

[40]

Plimpton S J. Fast Parallel Algorithms for Short-Range Molecular Dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.

[41]

L’Hôpital E, Lothenbach B, Le S G, et al. Incorporation of Aluminium in Calcium-Silicate-Hydrates[J]. Cement and Concrete Research, 2015, 75: 91-103.

[42]

Fulton J L, Heald S M, Badyal Y S, et al. Understanding the Effects of Concentration on the Solvation Structure of Ca2+ in Aqueous Solution. I: The Perspective on Local Structure from EXAFS and XANES[J]. The Journal of Physical Chemistry A, 2003, 107(23): 4 688-4 696.

[43]

Golub A M, Golovorushkin V I, Dorosh A K, et al. Composition and Structure of Solvate Complexes of Magnesium and Calcium Chlorides Studied by Solubility and X-ray Methods[J]. Journal of Structural Chemistry, 1974, 14(6): 919-923.

[44]

Chandrasekhar J, Spellmeyer D C, Jorgensen W L. Energy Component Analysis for Dilute Aqueous Solutions of Lithium(1+), Sodium(1+), Fluoride(1-), and Chloride(1-) Ions[J]. Journal of the American Chemical Society, 1984, 106(4): 903-910.

[45]

Lightstone F C, Schwegler E, Hood R Q, et al. A First Principles Molecular Dynamics Simulation of the Hydrated Magnesium Ion[J]. Chemical Physics Letters, 2001, 343(5–6): 549-555.

[46]

Anan T, Bernd M R. Structural Arrangement and Dynamics of the Hydrated Mg2+: An ab Initio QM/MM Molecular Dynamics Simulation[J]. Chemical Physics Letters, 2005, 409(4–6): 304-309.

[47]

Struis R P W J, Bleijser J D, Leyte J C. Magnesium-25(2+) and Chloride-35 Quadrupolar Relaxation in Aqueous Magnesium Chloride Solutions at 25 °C. 2. Relaxation at Finite Magnesium Chloride Concentrations[J]. The Journal of Physical Chemistry, 1989, 93(23): 7 943-7 952.

[48]

Aktulga H M, Fogarty J C, Pandit S, et al. Reactive Molecular Simulation on the Ordered Crystal and Disordered Glass of the Calcium Silicate Hydrate gel[J]. Ceramics International, 2016, 42(3): 4 333-4 346.

[49]

Ohtaki H, Radnai T. Structure and Dynamics of Hydrated Ions[J]. ChemInform, 1993, 93(3): 1 157-1 204.

[50]

Caminiti R, Licheri G, Piccaluga G, et al. X-ray Diffraction Study of MgCl2 Aqueous Solutions[J]. Journal of Applied Crystallography, 1979, 12: 34-38.

[51]

Licheri G, Piccaluga G, Pinna G. Diffraction Study of the Average Solute Species in CaCl2 Aqueous Solutions[J]. The Journal of Chemical Physics, 1976, 64(6): 2 437-2 244.

[52]

Mancinelli R, Botti A, Bruni F, et al. Hydration of Sodium, Potassium, and Chloride Ions in Solution and the Concept of Structure Maker/Breaker[J]. The Journal of Physical Chemistry B, 2007, 111(48): 13 570-13 577.

[53]

Neely J, Connick R. Rate of Water Exchange from Hydrated Magnesium Ion[J]. Journal of the American Chemical Society, 1969, 92(11): 3 476-3 478.

[54]

Zhang J, Yang J, Hou D, et al. Molecular Dynamics Study on Calcium Aluminosilicate Hydrate at Elevated Temperatures: Structure, Dynamics and Mechanical Properties[J]. Materials Chemistry and Physics, 2019, 233: 276-287.

[55]

Song Z, Jiang L, Liu J, et al. Influence of Cation Type on Diffusion Behavior of Chloride Ions in Concrete[J]. Construction and Building Materials, 2015, 99: 150-158.

[56]

Zhu Q, Jiang L, Chen Y, et al. Effect of Chloride Salt Type on Chloride Binding Behavior of Concrete[J]. Construction and Building Materials, 2012, 37: 512-517.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/