Structure and Optical Properties of ZnO Thin Films Prepared by the Czochralski Method

Zhanhong Ma , Fengzhang Ren , Zhouya Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 823 -828.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 823 -828. DOI: 10.1007/s11595-022-2602-3
Advanced Materials

Structure and Optical Properties of ZnO Thin Films Prepared by the Czochralski Method

Author information +
History +
PDF

Abstract

The zinc oxide seed film was coated on conductive glass (FTO) substrate by the Czochralski method, Zinc acetate and hexamethylenetetramine were used as raw materials to prepare growth solution, and then ZnO film was prepared by a low-temperature solution method. The effects of annealing temperature on the morphology, structure, stress and optical properties of ZnO films were studied. The thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectra (UV — vis), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). The results show that the films are ZnO nanorods. With the increase of annealing temperature, the diameter of the rod increases, and the nanorods tend to be oriented. The band gap of the sample obtained from the light absorption spectra first increases and then decreases with the increase of annealing temperature. When the annealing temperature is 350 °C, the crystallinity of zinc oxide film is the highest, the band gap is close to the theoretical value of pure ZnO.

Keywords

Czochralski method / ZnO film / annealing temperature / optical properties / micromorphology / internal stress

Cite this article

Download citation ▾
Zhanhong Ma, Fengzhang Ren, Zhouya Yang. Structure and Optical Properties of ZnO Thin Films Prepared by the Czochralski Method. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(5): 823-828 DOI:10.1007/s11595-022-2602-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma Z H, Ren F Z, Ming X L, et al. Cu-Doped ZnO Electronic Structure and Optical Properties Studied by First-Principles Calculations and Experiments[J]. Materials, 2019, 12(1): 196

[2]

Deng Y F, Ma Z H, Ren F Z, et al. Improved Photoelectric Performance of DSSCs Based on TiO2 Nanorod Array/Ni-doped TiO2 Compact Layer Composites Film[J]. J. Solid State Electrochem., 2019, 23: 3 031-3 041.

[3]

Deng Y F, Ma Z H, Ren F Z, et al. Enhanced Morphology and Photoelectric Properties of One-dimensional TiO2 Nanorod Array Films[J]. Chem. Phys. Lett., 2019, 724: 42-49.

[4]

Wu K X, Zha W S, Chen X. Photocatalytic Activity of TiO2 Coatings Fabricated on Al2O3 by Mechanical Coating Technique[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2021, 36(1): 1-5.

[5]

Zheng J H, Song J L, Jiang Q, et al. Optical Properties of Cu-doped ZnO Nanoparticles Experimental and First-Principles Theory Research[J]. J Mater Sci. Mater Electron., 2012, 23(8): 1 521-1 524.

[6]

Liu L Q, Cao G X, Hong K Q. Seed Free Growth of Aligned ZnO Nanowire Arrays on AZO Substrate[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(6): 1 372-1 375.

[7]

Ran F Y, Tanemura M, Hayashi Y, et al. Effect of Substrate Temperature on the Room-Temperature Ferromagnetism of Cu-doped ZnO Film[J]. J. Cryst. Growth, 2009, 31: 4 270-4 274.

[8]

Lue J G, J. Dai J, Zhu J B, et al. Effect of Na Concentrations on Microstructure and Optical Properties of ZnO Films[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(1): 23-27.

[9]

Yu L P. Development in p-type Doping of ZnO[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(6): 1 184-1 187.

[10]

Zheng H R, Jiang Y R, Yang S Y, et al. ZnO Nanorods Array as Light Absorption Antenna for High-gain UV Photodetectors[J]. J. Alloy. Compd., 2020, 812: 152 158.

[11]

Bhogaita M, Devaprakasam D. Hybrid Photoanode of TiO2-ZnO Synthesized by Co-precipitation Route for Dye-sensitized Solar Cell using Phyllanthus Reticulatas Pigment Sensitizer[J]. Sol Energy., 2021, 214: 517-530.

[12]

Shanmuganathan G, Banu I B S, Krishnan S, et al. Influence of K-doping on the Optical Properties of ZnO Thin Films Grown by Chemical Bath Deposition Method[J]. J. Alloy. Compd., 2013, 562: 187-193.

[13]

Jang S, Son P, Kim J. K Doping Effect on Structural and Optical Properties of ZnO Nanorods Grown on Semipolar (1122) GaN Films Using a Hydrothermal Growth Method[J]. Opt. Mater. Express., 2015, 5: 1 621.

[14]

Keshtkar J, Vargas G, Roberto J, et al. Preparation of Rod-like Aluminum Doped Zinc Oxide Powders by Sol-gel Technique Using Metal Chlorides and Acetylacetone Precursors[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(6): 1 293-1 297.

[15]

Yang J J, Fang Q Q, Wang B M, et al. ZnO Based Luminous and Diluted Magnetic Semiconductors Prepared by PVA Methods[J]. Chin. J. Lumin., 2006, 27(6): 939-943.

[16]

Bharathi V, Sivakumar M, Udayabhaskar R, et al. Structural, Enhanced Local Vibrational and Fluorescence Properties in K-doped ZnO Nanostructures[J]. Appl. Phys. A, 2014, 116(1): 395-401.

[17]

Ma Z H, Ren F Z, Deng Y F, et al. Experimental and Theoretical Studies of KxZn1−xO[J]. Ceram. Int., 2020, 46: 763-767.

[18]

Qiu D J, Wu H Z, Feng A M, et al. Annealing Effects on the Microstructure and Photoluminescence Properties of Ni doped ZnO Films[J]. Appl. Surf. Sci., 2004, 222: 263-268.

[19]

Kadam A N, Kim T G, Shin D S, et al. Morphological Evolution of Cu Doped ZnO for Enhancement of Photocatalytic Activity[J]. J. Alloy. Compd., 2017, 710: 102-113.

[20]

Sonkera R K, Sikarwarb S, Sabhajeetb S R, et al. Spherical Growth of Nanostructures ZnO Based Optical Sensing and Photovoltaic Application[J]. Opt. Mater., 2018, 83: 342-347.

[21]

Guo L J, Ye Z Z, Huang J G. Influeruce of Pudeposition Annealing on Crytallinity of Zinc Oxide Flims[J]. Chin. J. Semicond., 2003, 24(7): 370-377.

[22]

Kim S K, Kim S, Lee C H, et al. The Structural and Optical Behaviors of K-ZnO/Al2O3 (0001) Films[J]. Appl. Phys. Lett., 2004, 85(3): 419-421.

[23]

Ma Z H, Ren F Z, Deng Y F, et al. Structural, Electrochemical and Optical Properties of Ni Doped ZnO: Experimental and Theoretical Investigation[J]. Optik, 2020, 219: 165 204.

[24]

Trunk M, Venkatachalapathy V, Galeckas A, et al. Deep Level Related Photoluminescence in ZnMgO[J]. Appl. Phys. Lett., 2010, 97: 211 901.

[25]

Sun S, Wu P, Xing P. d 0 Ferromagnetism in Undoped n and p-type In2O3 Firms[J]. Appl. Phys. Lett., 2012, 101: 132 417.

[26]

Deng Y F, Ma Z H, Ren F Z. Enhanced Photoelectronchemical Performance of TiO2 Nanorod Array Films Based on TiO2 Compact Layers Synthesized by a Two-step Method[J]. Rsc Adv., 2019, 9: 21 777-21 785.

[27]

Park C H, Zhang S B, Wei S H. Origin of p-type Doping Difficulty in ZnO: the Impurity Perspective[J]. Phys. Rev. B, 2002, 66: 073 202.

[28]

Dixit H, Saniz R, Lamoen D, et al. The Quasiparticle Band Structure of Zincblende and Rocksalt ZnO[J]. J. Phys. Condens. Mat., 2010, 22: 125 505.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/