Facet Regulation of Fe2O3 via Nanoarray Architecture to Enable High Faradic Efficiency for Electrocatalytic Nitrogen Fixation

Anqi Xie , Liang Xiao , Qiumin Qiao , Jinping Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 807 -814.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 807 -814. DOI: 10.1007/s11595-022-2600-5
Advanced Materials

Facet Regulation of Fe2O3 via Nanoarray Architecture to Enable High Faradic Efficiency for Electrocatalytic Nitrogen Fixation

Author information +
History +
PDF

Abstract

We propose a facile facet regulation enabled by nanoarray architecture to achieve a high faradic efficiency of Fe2O3 catalyst for NRR. The α-Fe2O3 nanorod arrays (NAs) were directly grown on carbon cloth (CC) with specific (104) facet exposure. The highly exposed (104) facets provide abundant unsaturated Fe atoms with dangling bonds as nitrogen reduction reaction catalytically active sites. In addition, the NAs architecture enables the enhanced electrochemical surface area (ECSA) to fully manifest the active sites and maintain the mass diffusion. Thus, the selectively exposed (104) facets coupled with the high ECSA of NAs architecture achieve a high FE of 14.89% and a high yield rate of 17.28 µg h−1 cm−2. This work presents an effective strategy to develop highly efficient catalytic electrodes for electrochemical NRR via facet regulation and nanoarray architecture.

Keywords

facet regulation / Fe2O3 / nanoarray architecture / nitrogen reduction reaction / faradic efficiency

Cite this article

Download citation ▾
Anqi Xie, Liang Xiao, Qiumin Qiao, Jinping Liu. Facet Regulation of Fe2O3 via Nanoarray Architecture to Enable High Faradic Efficiency for Electrocatalytic Nitrogen Fixation. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(5): 807-814 DOI:10.1007/s11595-022-2600-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schlögl R. Catalytic Synthesis of Ammonia—A “Never-Ending Story ”?[J]. Angew Chem. Int. Ed., 2003, 42(18): 2 004-2 008.

[2]

Bao D, Zhang Q, Meng F L, et al. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N Fixation and Renewable Energy Storage Using N2/NH3 cycle[J]. Adv. Mater., 2017, 29(3): 1 604 799

[3]

Guo WH, Liang Z, Zhao J, et al. Hierarchical Cobalt Phosphide Hollow Nanocages toward Electrocatalytic Ammonia Synthesis under Ambient Pressure and Room Temperature[J]. Small Methods, 2018, 2(12): 1 800 204

[4]

Guo WH, Zhang K X, Liang Z B, et al. Electrochemical Nitrogen Fixation and Utilization: Theories, Advanced Catalyst Materials and System Design[J]. Chem. So.c Rev., 2019, 48(24): 5 658-5 716.

[5]

Kordali V, Kyriacou G, Lambrou C. Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in A Solid Polymer Electrolyte cell[J]. Chem. Commun., 2000, 17: 1 673-1 674.

[6]

Chen G F, Cao X, Wu S, et al. Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via A Li+ Incorporation Strategy[J]. J. Am. Chem. Soc., 2017, 139(29): 9 771-9 774.

[7]

Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical Ammonia Synthesis—The Selectivity Challenge[J]. ACS Catal., 2017, 7(1): 706-709.

[8]

F, Zhao Z S, Guo R J, et al. Nitrogen-Coordinated Single Fe Sites for Efficient Electrocatalytic N2 Fixation in Neutral Media[J]. Nano Energy, 2019, 61: 420-427.

[9]

Chen S M, Perathoner S, Ampelli C, et al. Room-Temperature Electrocatalytic Synthesis of NH3 from H2O and N2 in A Gas-Liquid-Solid Three-Phase Reactor[J]. ACS Sustain. Chem. Eng., 2017, 5(8): 7 393-7 400.

[10]

Kong J M, Lim A, Yoon C, et al. Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using A γ-Fe2O3 Catalyst[J]. ACS Sustain. Chem. Eng., 2017, 5(11): 10 986-10 995.

[11]

Yu X M, Han P, Wei Z X, et al. Boron-Doped Graphene for Electrocatalytic N2 Reduction[J]. Joule., 2018, 2(8): 1 610-1 622.

[12]

Yang L H, Choi C, Hong S, et al. Single Yttrium Sites on Carbon-Coated TiO2 for Efficient Electrocatalytic N2 Reduction[J]. Chem. Commun., 2020, 56(74): 10 910-10 913.

[13]

Tong Y Y, Guo H P, Liu D L, et al. Vacancy Engineering of Iron-Doped W18O49 Nanoreactors for Low-Barrier Electrochemical Nitrogen Reduction[J]. Angew. Chem. In. Ed., 2020, 59(19): 7 356-7 361.

[14]

Du Y Q, Jiang C, Xia W, et al. Electrocatalytic Reduction of N2 and Nitrogen-Incorporation Process on Dopant-Free Defect Graphene[J]. J. Mater. Chem. A, 2019, 8(1): 55-61.

[15]

Lv C D, Qian Y M, Yan C S, et al. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions[J]. Angew. Chem. In. Ed., 2018, 130(32): 10 403-10 407.

[16]

Wang Y, Shi M M, Bao D, et al. Generating Defect-Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia[J]. Angew. Chem. In. Ed., 2019, 58(28): 9 464-9 469.

[17]

Han W, Yan X, Jiang Y, et al. Nitrogen and Sulfur Co-Doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2020, 35(2): 280-286.

[18]

Chu K, Nan H F, Li Q Q, et al. Amorphous MoS3 Enriched with Sulfur Vacancies for Efficient Electrocatalytic Nitrogen Reduction[J]. J. Energy Chem., 2021, 53: 132-138.

[19]

Li Y, Gao D Y, Zhao S H, et al. Carbon Doped Hexagonal Boron Nitride Nanoribbon as Efficient Metal-Free Electrochemical Nitrogen Reduction Catalyst[J]. Chem. Eng. J., 2021, 410: 128 419.

[20]

Zhang W M, Zhao X Y, Zhao Y W, et al. Mo-Doped Zn, Co Zeolitic Imidazolate Framework-Derived Co9S8 Quantum Dots and Mos2 Embedded in Three-Dimensional Nitrogen-Doped Carbon Nanoflake Arrays as An Efficient Trifunctional Electrocatalysts for The Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction[J]. ACS Appl. Mater. Interfaces, 2020, 12(9): 10 280-10 290.

[21]

Wang Y, Cui X Q, Zhao J Q, et al. Rational Design of Fe-N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution[J]. ACS Catalysis, 2019, 9(1): 336-344.

[22]

Nazemi M, El-Sayed M A. The Role of Oxidation of Silver on Bimetallic Gold-Silver Nanocages on Electrocatalytic Activity of Nitrogen Reduction Reaction[J]. J. Phys. Chem. C, 2019, 123(18): 11 422-11 427.

[23]

Cheng S, Gao Y J, Yan Y L, et al. Oxygen Vacancy Enhancing Mechanism of Nitrogen Reduction Reaction Property in Ru/TiO2[J]. J. Energy Chem., 2019, 39: 144-151.

[24]

Bai Y, Ye LQ, Chen T, et al. Facet-Dependent Photocatalytic N2 Fixation of Bismuth-Rich Bi5O7l Nanosheets[J]. ACS Appl. Mater. Interfaces, 2016, 8(41): 27 661-27 668.

[25]

Yang D, Chen T, Wang Z. Electrochemical Reduction of Aqueous Nitrogen (N2) at a Low Overpotential on (110)-Oriented Mo Nanofilm[J]. J. Mater. Chem. A, 2017, 5(36): 18 967-18 971.

[26]

Zhao Y J, Yan D, Ding C H, et al. Fe2O3 Nanocubes Exposed (012) Active Facets Combination with Graphene Rendering Enhanced Lithium Storage Capability[J]. J. Power Sources, 2016, 327: 658-665.

[27]

Liu G, Li H W, Zhou H H, et al. Convenient Design of Hollow Co3O4 Nanostructure on Carbon Cloth for Flexible Supercapacitors[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2020, 35(3): 469-472.

[28]

Zhang Y Z, Chen X, Zhang S Y, et al. Defective Titanium Dioxide Nanobamboo Arrays Architecture for Photocatalytic Nitrogen Fixation up to 780 nm[J]. Chem. Eng. J., 2020, 401: 126 033.

[29]

Zhang X P, Kong R M, Du H T, et al. Highly Efficient Electrochemical Ammonia Synthesis via Nitrogen Reduction Reactions on A VN Nanowire Array under Ambient Conditions[J]. Chem. Commun., 2018, 54(42): 5 323-5 325.

[30]

Chen Y, Li X H, Wu P L, et al. Enhancement of Structural Stability of Nanosized Amorphous Fe2O3 Powders by Surface Modification[J]. Mater. Lett., 2007, 61(4): 1 223-1 226.

[31]

Hanedar Y, Demir U, Oznuluer T. Electrochemical Synthesis and Photoelectrochemical Properties of Grass-Like Nanostructured α-Fe2O3 Photoanodes for Use in Solar Water Oxidation[J]. Superlattices Microstruct., 2016, 98: 371-378.

[32]

Liu X H, Zhang J, Wu S H, et al. Single Crystal α-Fe2O3 with Exposed 104 Facets for High Performance Gas Sensor Applications[J]. RSC Adv., 2012, 2(15): 6 178-6 184.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/