The Effective Surface Metallization of Hollow Glass Microspheres for Flexible Electromagnetic Shielding Film

Fan Bu , Pengcheng Song , Yahui Liu , Jun Wang , Xiyuan Wu , Lei Liu , Chuanhua Xu , Jianfeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 779 -786.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (5) : 779 -786. DOI: 10.1007/s11595-022-2596-x
Advanced Materials

The Effective Surface Metallization of Hollow Glass Microspheres for Flexible Electromagnetic Shielding Film

Author information +
History +
PDF

Abstract

The surface of hollow glass microspheres (HGMs) was roughened by a HCl+NH4F strategy, which achieved a broken ratio as 16.10%, and then metallized by electroless plating by Co nanoparticles up to 90 wt% (abbreviated as Co-HGMs). The average grain size of Co was measured to range from 0.4 to 0.5 µm. Then Co-HGMs were mixed with liquid silicone rubber and xylene, and cured on a perspex plate applicable for flexible electromagnetic shielding. By attentive parameter optimization, a film about 0.836 mm in thickness was obtained with a density of 0.729 g/cm3, showing a shielding effectiveness of 15.2 dB in the X-band (8.2–12.4 GHz) at room temperature, which was ascribed to the formation of a conductive network of Co-HGMs inside the film. Simultaneously, the tensile strength of 0.89 MPa at an elongation ratio of 194.5% was also obtained, showing good mechanical properties and tensile strength.

Keywords

hollow glass microspheres (HGMs) / electroless plating / electromagnetic shielding film / flexible film / lightweight materials

Cite this article

Download citation ▾
Fan Bu, Pengcheng Song, Yahui Liu, Jun Wang, Xiyuan Wu, Lei Liu, Chuanhua Xu, Jianfeng Zhang. The Effective Surface Metallization of Hollow Glass Microspheres for Flexible Electromagnetic Shielding Film. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(5): 779-786 DOI:10.1007/s11595-022-2596-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han M K, Shuck C E, Rakhmanov R, et al. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding[J]. ACS Nano., 2020, 14(4): 5 008-5 016.

[2]

Liu R T, Miao M, Li Y H, et al. Ultrathin Biomimetic Polymeric Ti3C2Tx MXene Composite Films for Electromagnetic Interference Shielding[J]. ACS Appl. Mater. Inter., 2018, 10(51): 44 787-44 795.

[3]

Dai B Z, Zhao B, Xie X, et al. Novel Two-Dimensional Ti3C2Tx, MXenes/nNano- Carbon Sphere Hybrids for High-Performance Microwave Absorption[J]. J. Mater. Chem. C, 2018, 6(21): 5 690-5 697.

[4]

Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes)[J]. Science, 2016, 353(6304): 1 137-1 140.

[5]

Zhao B, Fan B B, Shao G, et al. Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities[J]. ACS Appl. Mater. Inter., 2015, 7(33): 18 815-18 823.

[6]

Yin X W, Cheng L F, Zhang L T, et al. Fibre-Reinforced Multifunctional SiC Matrix Composite Materials[J]. Int. Mater. Rev., 2017, 62(3): 117-172.

[7]

Jiang Z P, Huang W B, Chen L S, et al. Ultrathin, Lightweight, and Freestanding Metallic Mesh for Transparent Electromagnetic Interference Shielding[J]. Opt. Express, 2019, 27(17): 24 194-24 206.

[8]

Chen Z P, Xu C, Ma C Q, et al. Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding[J]. Adv. Mater, 2013, 25(9): 1 296-1 300.

[9]

Hu X L, Shao F, Wang R W. Wear Mechanism of WC-Co Cemented Carbide Tool in Cutting Ti-6Al-4V Based on Thermodynamics[J]. J. Wuhan Univ. Technol. -Mat. Sci. Edi., 2020, 35(5): 973-979.

[10]

Han W I, Yan X M, Jiang Y, et al. Nitrogen and Sulfur Co-Doped Porous Carbon Derived From ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells[J]. J. Wuhan Univ. Technol. -Mat. Sci. Edi., 2020, 35(2): 280-286.

[11]

Liang J J, Wang Y, Huang Y, et al. Electromagnetic Interference Shielding of Graphene/Epoxy Composites[J]. Carbon, 2009, 47(3): 922-925.

[12]

Wen B, Cao M S, Lu M M, et al. Reduced Graphene Oxides: LightWeight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures[J]. Adv. Mater., 2014, 26(21): 3 484-3 489.

[13]

Zhang H B, Yan Q, Zheng W G, et al. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding[J]. ACS Appl. Mater. Inter., 2011, 3(3): 918-924.

[14]

Yousefi N, Sun X Y, Lin X Y, et al. Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-Performance Electromagnetic Interference Shielding[J]. Adv. Mater., 2014, 26(31): 5 480-5 487.

[15]

Yan D X, Pang H, Li B, et al. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding[J]. Adv. Funct. Mater., 2015, 25(4): 559-566.

[16]

De Volder M F L, Tawfick S H, Baughman R H, et al. Carbon Nano-tubes: Present and Future Commercial Applications[J]. Science, 2013, 339(6): 535-539. 119

[17]

Yang Y L, Gupta M C. Novel Carbon Nanotube-Polystyrene Foam Composites for Electromagnetic Interference Shielding[J]. Nano Lett., 2005, 5(11): 2 131-2 134.

[18]

Li N, Huang Y, Du F, et al. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites[J]. Nano Lett., 2006, 6(6): 1 141-1 145.

[19]

Al-Saleh M H, Sundararaj U. Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites[J]. Carbon, 2009, 47(7): 1 738-1 746.

[20]

Cao M S, Yang J, Song W L, et al. Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption[J]. ACS Appl. Mater. Inter., 2012, 4(12): 6 949-6 956.

[21]

Cao W T, Chen F F, Zhu Y J, et al. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-In-spired Structure and Superior Electromagnetic Interference Shielding Properties[J]. ACS Nano., 2018, 12(5): 4 583-4 593.

[22]

Zhao S, Zhang H B, Luo J Q, et al. Highly Electrically Conductive Three-Dimensional Ti3C2TX MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances[J]. ACS Nano., 2018, 12(11): 11 193-11 202.

[23]

Cao M S, Cai Y Z, He P, et al. 2D MXenes: Electromagnetic Property for Microwave Absorption and Electromagnetic Interference Shield-ing[J]. Chem. Eng. J., 2019, 359(1): 1 265-1 302.

[24]

Wang L, Chen L X, Song P, et al. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application[J]. Compos. Part B-Eng., 2019, 171(1): 111-118.

[25]

Li X L, Yin X W, Han M K S, et al. A Controllable Heterogeneous Structure and Electromagnetic Wave Absorption Properties of Ti2CTx MXene[J]. J. Mater. Chem. C, 2017, 5(30): 7 621-7 628.

[26]

Chen M T, Zhang L, Duan S S, et al. Highly Conductive and Flexible Polymer Composites with Improved Mechanical and Electromagnetic Interference Shielding Performances[J]. Nanoscale, 2014, 6(7): 3 796-3 803.

[27]

Kwon S, Ma R, Kim U, et al. Flexible Electromagnetic Interference Shields Made of Silver Flakes, Carbon Nanotubes and Nitrile Butadiene Rubber[J]. Carbon, 2014, 68(1): 118-124.

[28]

Mondal S, Ganguly S, Rahaman M, et al. A Strategy to Achieve Enhanced Electromagnetic Interference Shielding at Low Concentration with a New Generation of Conductive Carbon Black in a Chlorinated Polyethylene Elastomeric Matrix[J]. Phys. Chem. Chem. Phys., 2016, 18(35): 24 591-24 599.

[29]

Yung K C, Zhu B L, Yue T M, et al. Preparation and Properties of Hollow Glass Microsphere-Filled Epoxy-Matrix Composites[J]. Compos. Sci. Technol., 2009, 69(2): 260-264.

[30]

Park S J, Jin F L, Lee C J. Preparation and Physical Properties of Hollow Glass Microspheres-Reinforced Epoxy Matrix Resins[J]. Mat. Sci. Eng. A-Struct., 2005, 402(1–2): 335-340.

[31]

Zhang Q Y, Wu M, Zhao W. Electroless Nickel Plating on Hollow Glass Microspheres[J]. Surf. Coat. Tech., 2005, 192(2–3): 213-219.

[32]

He Y J, Li G F, Li H B, et al. Ceramsite Containing Iron Oxide and Its Use as Functional Aggregate in Microwave Absorbing Cement-Based Materials[J]. J. Wuhan Univ. Technol. -Mat. Sci Edi., 2018, 33(1): 133-138.

[33]

Fu W Y, Liu S K, Fan W H, et al. Hollow Glass Microspheres Coated with CoFe2O4 and Its Microwave Absorption Property[J]. J. Magn. Magn. Mater., 2007, 316(1): 54-58.

[34]

Zhang J F, Yang X P, Yu S B, et al. Roughening of Hollow Glass Microspheres by NaF for Ni Electroless Plating[J]. Surf. Coat. Technol., 2019, 359(1): 62-72.

[35]

Bu F, Zhang J F, Yu S B, et al. Effective Surface Pretreatment of Hollow Glass Microspheres via a Combined KF Roughening and Alkali Washing Strategy for the Following Metallization[J]. Adv. Powder Technol., 2020, 31(6): 2 305-2 314.

[36]

Araque L M, Lemos de Morais A C, Alues T S, et al. Preparation and Characterization of Poly(hydroxybutyrate) and Hollow Glass Micro-spheres Composite Films: Morphological, Thermal, and Mechanical Properties[J]. J. Mater. Res. Technol., 2019, 8(1): 935-943.

[37]

Cao X G, Zhang H Y. Study of Pretreatment Techniques and Characterization of Electroless Silver on Cenospheres[J]. Electron. Mater. Lett., 2012, 8(5): 519-522.

[38]

Zhou R H, Chen H Y, Liu G L, et al. Conductive and Magnetic Glass Microsphere/Cobalt Composites Prepared via an Electroless Plating Route[J]. Mater. Lett., 2013, 112(1): 97-100.

[39]

An Z G, Zhang J J, Pan S L. Fabrication of Glass/Ni-Fe-P Ternary Alloy Core/Shell Composite Hollow Microspheres Through a Modified Electroless Plating Process[J]. Appl. Surf. Sci., 2008, 255(5): 2 219-2 224.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/