Microstructure Refinement of Al-5Ti-B Grain Refiner with Electromagnetic Energy

Chunlei Yan , Yonglin Ma , Shuai He , Shuqing Xing , Xinyu Bao

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 740 -745.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 740 -745. DOI: 10.1007/s11595-022-2590-3
Metallic Materials

Microstructure Refinement of Al-5Ti-B Grain Refiner with Electromagnetic Energy

Author information +
History +
PDF

Abstract

The influence of the electromagnetic energy on the microstructure of Al−5Ti−B grain refiner was discussed. In this study, the electromagnetic energy was applied above the liquid phase line temperature. Compared with Al−5Ti−B without electromagnetic energy applied, the experimental results show that the size of secondary particles is reduced and its size distribution becomes more uniform. Simultaneously, the secondary phase particles are uniformly spread in the matrix response to the electromagnetic energy. Moreover, when adding Al−5Ti−B with electromagnetic energy to the pure aluminum melt, it is clear that the electromagnetic energy has a significantly impact on refining properties of Al−5Ti−B. The mean size of pure aluminum is reduced by 27.6% in maximum with more uniform size distribution. The change in the microstructure is attributed to the electromagnetic energy changes the melt structure. With the electromagnetic energy entry into the system, the electromagnetic energy reduces the size of atomic clusters and increases the number of atomic clusters, thus the number of nuclei increases.

Keywords

rectangle pulsed electromagnetic field / Al−5Ti−B / electromagnetic energy / liquid phase line

Cite this article

Download citation ▾
Chunlei Yan, Yonglin Ma, Shuai He, Shuqing Xing, Xinyu Bao. Microstructure Refinement of Al-5Ti-B Grain Refiner with Electromagnetic Energy. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(4): 740-745 DOI:10.1007/s11595-022-2590-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu CX, Lu BF, Lu ZL, et al. Grain Refinement of AZ31 Magnesium Alloy by Al−Ti−C−Y Master Alloy[J]. Journal of Rare Earths, 2008, 26(004): 604-608.

[2]

Han G, Liu XF, Ding HM. Grain Refinement of AZ31 Magnesium Alloy by Mg−Al−C Master Alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 19(5): 1057-1064.

[3]

Metan V, Eigenfeld K, Rbiger D, et al. Grain Size Control in Al−Si Al loys by Grain Refinement and Electromagnetic Stirring[J]. Journal of Alloys and Compounds, 2009, 487(1–2): 163-172.

[4]

Mohanty PS, Gruzleski JE. Grain Refinement Mechanisms of Hypoeutectic Al−Si Alloys[J]. Acta Materialia, 1996, 44(9): 3749-3760.

[5]

Wang TM, Chen ZN, Fu HW, et al. Grain Refinement Mechanism of Pure Aluminum by Inoculation with Al−B Master Alloys[J]. Materials Science & Engineering A, 2012, 549: 136-143.

[6]

Arnberg L, Bckerud L, Klang H. Intermetallic Particles in Al−Ti−B-type Master Alloys for Grain Refinement of Aluminium[J]. Metal Science Journal, 2013, 9(1): 7-13.

[7]

Liotti E, Lui A, Vincent R, et al. A Synchrotron X-ray Radiography Study of Dendrite Fragmentation Induced by a Pulsed Electromagnetic Field in an Al−15Cu Alloy[J]. Acta Materialia, 2014, 70: 228-239.

[8]

Schumacher P, Greer AL, Worth J, et al. New Studies of Nucleation Mechanisms in Aluminium Alloys: Implications for Grain Refinement Practice[J]. Metal Science Journal, 2013, 14(5): 394-404.

[9]

Wang EZ, Gao T, Nie JF, et al. Grain Refinement Limit and Mechanical Properties of 6063 Alloy Inoculated by Al−Ti−C (B) Master Alloys[J]. Journal of Alloys & Compounds, 2014, 594: 7-11.

[10]

Yan YW, Fu ZY, Yuan RZ. Grain Refining Performance of SHS Al−50TiC Master Alloys for Commercially Pure Aluminum[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2002, 17(3): 13-16.

[11]

Koltygin A, Bazhenov V, Mahmadiyorov U. Influence of Al−5Ti−1B Master Alloy Addition on the Grain Size of AZ91 Alloy[J]. Journal of Magnesium and Alloys, 2017, 5(3): 313-319.

[12]

Greer AL, Bunn AM, Tronche A, et al. Modelling of Inoculation of Metallic Melts: Application to Grain Refinement of Aluminium by Al−Ti−B[J]. Acta Materialia, 2000, 48(11): 2823-2835.

[13]

Sigworth GK. The Grain Refining of Aluminum and Phase Relationships in the Al−Ti−B System[J]. Metallurgical Transactions A, 1984, 15(2): 277-282.

[14]

Rokhlin LL, Dobatkina TV, Bochvar NR, et al. Investigation of Phase Equilibria in Alloys of the Al−Zn−Mg−Cu−Zr−Sc System[J]. Journal of Alloys & Compounds, 2004, 367(1–2): 10-16.

[15]

Zhang Q, Cao M, Cai J. AlSi9Mg Aluminum Alloy Semi-solid Slurry Preparation by Intermediate Frequency Electromagnetic Oscillation Process[J]. Journal of Materials Processing Technology, 2015, 215: 42-49.

[16]

Wang YX, Zeng XQ, Ding WJ. Effect of Al−4Ti−5B Master Alloy on the Grain Refinement of AZ31 Magnesium Alloy[J]. Scripta Materialia, 2006, 54(2): 269-273.

[17]

Han YF, Li K, Wang J, et al. Influence of High-intensity Ultrasound on Grain Refining Performance of Al−5Ti−1B Master Alloy on Aluminium[J]. Materials Science & Engineering A, 2005, 405(1–2): 306-312.

[18]

Yu H, Wang N, Guan R, et al. Evolution of Secondary Phase Particles during Deformation of Al−5Ti−1B Master Alloy and Their Effect on α-Al Grain Refinement[J]. Journal of Materials Science & Technology, 2018, 34(12): 2297-2306.

[19]

Abd El Aal MI, El Mahallawy N, Shehata FA, et al. Wear Properties of ECAP-processed Ultrafine Grained Al−Cu Alloys[J]. Materials Science & Engineering A, 2010, 527(16–17): 3726-3732.

[20]

Ghadimi H, Nedjhad SH, Eghbali B. Enhanced Grain Refinement of Cast Aluminum Alloy by Thermal and Mechanical Treatment of Al−5Ti−B Master Alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1563-1569.

[21]

Sun WB. Microstructure and Grain Refining Performance of Al−5Ti−1B Master Alloy Prepared under High-intensity Ultrasound[J]. Materials Science and Engineering: A., 2006, 430(1–2): 326-331.

[22]

Zhang L, Li XQ, Li RQ, et al. Effects of High-intensity Ultrasound on the Microstructures and Mechanical Properties of Ultra-large 2219 Al Alloy Ingot[J]. Materials Science and Engineering A, 2019, 763: 138154.

[23]

Li YL, Feng HK, Cao FR, et al. Effect of High Density Ultrasonic on the Microstructure and Refining Property of Al−5Ti−0.25C Grain Refiner Alloy[J]. Materials Science & Engineering A, 2008, 487(1–2): 518-523.

[24]

Hang C, Jie JC, Ying F, et al. Grain Refinement of Pure Aluminum by Direct Current Pulsed Magnetic Field and Inoculation[J]. Transactions Of Nonferrous Metals Society of China, 2014, 24(5): 1295-1300.

[25]

Zhao ZL, Ren HG, Liu L. Al−7Si Alloy Directional Solidification with the Application of a Pulsed Magnetic Field[J]. Journal of Iron and Steel Research(International), 2012(1): 208–211

[26]

Li L, Liang WL, Ban CY, et al. Effects of a High-voltage Pulsed Magnetic Field on the Solidification Structures of Biodegradable Zn−Ag Alloys[J]. Materials Characterization, 2020, 163: 110274.

[27]

Shao Q, Wang G, Wang HD, et al. Improvement Inuniformity of Alloy Steel by Pulsed Magnetic Field Treatment[J]. Materials Science and Engineering A, 2020, 799: 140143.

[28]

Balasubramani N, Wang G, Stjohn DH, et al. Current Understanding of the Origin of Equiaxed Grains in Pure Metals during Ultrasonic Solidification and a Comparison of Grain Formation Processes with Low Frequency Vibration, Pulsed Magnetic and Electric-current Pulse Techniques[J]. Journal of Materials Science & Technology, 2021, 65: 38-53.

[29]

Gao YL, Li QS, Gong YY, et al. Comparative Study on Structural Transformation of Low-melting Pure Al and High-melting Stainless Steel under External Pulsed Magnetic Field[J]. Materials Letters, 2007, 61(18): 4011-4014.

[30]

Wang B, Yang YS. Microstructure Refinement of Mg−Gd−Y−Zr Alloy under Pulsed Magnetic Field[J]. Journal of Iron and Steel Research(International), 2012, 1: 446-450.

[31]

Bai QW, Ma YL, Xing SQ, et al. Nucleation and Grain Refinement of 7A04 Aluminum Alloy under a Low-power Electromagnetic Pulse[J]. Journal of Materials Engineering & Performance, 2018, 27(2): 857-863.

[32]

Bai QW, Ma YL, Xing SQ, et al. Effect of Flow, Heat Transfer and Magnetic Energy on the Grain Refinement of 7A04 Alloy under Electromagnetic Pulse[J]. International Journal of Materials Research, 2017, 108(12): 1064-1072.

[33]

Li YJ, Tao WZ, Yang YS. Grain Refinement of Al−Cu Alloy in Low Voltage Pulsed Magnetic Field[J]. Journal of Materials Processing Technology, 2012, 212(4): 903-909.

[34]

Gao MC, Bennett TA, Rollett AD, et al. The Effects of Applied Magnetic Fields on the α/γ Phase Boundary in the Fe−Si System[J]. Journal of Physics D Applied Physics, 2006, 39(14): 2890

[35]

Long ZP, Jiang QY, Wang JT, et al. Nucleation Kinetics of Paramagnetic and Diamagnetic Metal Melts under a High Magnetic Field[J]. Journal of Materials Science and Technology, 2021, 73: 165-170.

[36]

Li QS, Song CJ, Li HB, et al. Effect of Pulsed Magnetic Field on Microstructure of 1Cr18Ni9Ti Austenitic Stainless Steel[J]. Materials Science & Engineering A, 2007, 466(1–2): 101-105.

[37]

Li CJ, Ren ZM, Ren WL, et al. Nucleation and Growth Behaviors of Primary Phase in Hypoeutectic Al-Cu Alloy in High Magnetic Field[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: S1-S6.

[38]

Bai QW, Ma YL, Xing SQ, et al. Refining of a DC-casting Aluminum Alloy Structure Using Surface Electromagnetic Pulsing[J]. Chinese Journal of Engineering, 2017, 39(12): 1828-1834.

[39]

Mi GB, Li PJ, He LJ. Structure and Property of Metal Melt II-Evolution of Atomic Clusters in the Not High Temperature Range Above Liquidus[J]. Science China Physics Mechanics & Astronomy, 2010, 53(10): 1823-1830.

[40]

Lan Q, Cheng CL, Zhang JF, et al. The Relationship between the Thermoelectric Power and Resultantsolidification Microstructures of Al−Si melt under Electromagnetic Field[J]. Materials Chemistry and Physics., 2019, 231: 203-215.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/