Effect of Ga2O3-doping on Properties and Structure of ZBLAN Glass

Sujie Cui , Jiacheng Li , Long Zhang , Yiguang Jiang , Zaiyang Wang , Longfei Zhang , Chengfeng Yuan , Zongyun Shen , Huidan Zeng

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 564 -569.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 564 -569. DOI: 10.1007/s11595-022-2567-2
Advanced Materials

Effect of Ga2O3-doping on Properties and Structure of ZBLAN Glass

Author information +
History +
PDF

Abstract

It is interesting to explore a novel oxyfluoride glass with good glass stability to be applied in optical communication and optical windows at infrared (IR) wavelength. We demonstrated a new glass of Ga2O3-doped ZrF4−BaF2−LaF3−AlF3−NaF (ZBLAN) glass using a melt-quenched technique. The effect of Ga2O3-doping on glass properties and structure was characterized by differential thermal analysis (DTA), IR spectra, Raman spectra, and X-ray diffraction (XRD). It is found that the glass thermal stability (ΔT) increases by 14% when the addition of Ga2O3 reaches 1mol%. With the increase of Ga2O3 content, the density and refractive index of the glasses increase. Ga2O3-doping does not affect the IR cut-off edge and maintains the transmittance near 90% in the range of 2.5–5 µm, which is almost equal to the undoped sample. Ga2O3-doping hardly changes the initial coordinated structure of Zr4+ according to the results of IR spectra and Raman spectra. Ga3+ holds in the interstice site of the network coordinated with F and the part of O2− introduced by Ga2O3 is coordinated with Al3+ forming Al−O bond. This study offers a new glass composition that may be potentially used in fabricating mid-IR optical fiber and large-size glasses for IR windows.

Keywords

fluorozirconate glass / Ga2O3-doped / glass-thermal ability / oxyfluoride glasses

Cite this article

Download citation ▾
Sujie Cui, Jiacheng Li, Long Zhang, Yiguang Jiang, Zaiyang Wang, Longfei Zhang, Chengfeng Yuan, Zongyun Shen, Huidan Zeng. Effect of Ga2O3-doping on Properties and Structure of ZBLAN Glass. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(4): 564-569 DOI:10.1007/s11595-022-2567-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang L, Li Y, Zhang B, et al. 30-W Supercontinuum Generation based on ZBLAN Fiber in an All-fiber Configuration[J]. Photonics Research, 2019, 7: 1061-1065.

[2]

Yao C, Jia Z, Li Z, et al. High-power Mid-infrared Supercontinuum Laser Source Using Fluorotellurite Fiber[J]. Optica, 2018, 5: 1264-1270.

[3]

Guo Y, Liu X, Duan H, et al. Investigation on Local Structure Surrounding Erbium Cations in Fluoride Glasses with TeO2 Introduction for 2.7 µm Emission[J]. Journal of Alloys and Compounds, 2018, 753: 502-507.

[4]

Li T, Nedeljkovic M, Hattasan N, et al. Mashanovich, Ge-on-Si Modulators Operating at Mid-infrared Wavelengths up to 8 µm[J]. Photonics Research, 2019, 7: 828-836.

[5]

Zou Y, Chakravarty S, Chung CJ, et al. Mid-infrared Silicon Photonic Waveguides and Devices [Invited][J]. Photonics Research, 2018, 6: 254-276.

[6]

Qi F, Huang F, Wang T, et al. Highly Er3+-doped Fluorotellurite Glass for 1.5 µm Broadband Amplification and 2.7 µm Microchip Laser Applications[J]. Journal of Luminescence, 2018, 202: 132-135.

[7]

Li W, Wu J, Guan X, et al. Efficient Continuous-wave and Short-pulse Ho3+-doped Fluorozirconate Glass All-fiber Lasers Operating in the Visible Spectral Range[J]. Nanoscale, 2018, 10: 5272-5279.

[8]

Rezvani SA, Nomura Y, Ogawa K, et al. Generation and Characterization of Mid-infrared Supercontinuum in Polarization Maintained ZBLAN Fibers[J]. Opt. Express, 2019, 27: 24499-24511.

[9]

Almeida RM, Mackenzie JD. Vibrational Spectra and Structure of Fluorozirconate Glasses[J]. The Journal of Chemical Physics, 1981, 74: 5954-5961.

[10]

Kazuya O, Shibata T. Preparation and Characterization of ZrF4−BaF2−LaF3−NaF−AIF3 Glass Optical Fibers[J]. Journal of Lightwave Technology, 1984, 2(5): 602-606.

[11]

Torres A, Ganley J, Maji A, et al. Enhanced Processability of ZrF4−BaF2−LaF3−AlF3−NaF Glass in Microgravity[M]. Infrared Technology and Applications XXXIX, 2013

[12]

Saad M, Poulain M. Glass Forming Ability Criterion[J]. Materials Science Forum, 1987, 19–20: 11-18.

[13]

Yasui I, Hagihara H, Inoue H. The Effect of Addition of Oxides on the Crystallization Behavior of Aluminum Fluoride-based Glasses[J]. Journal of Non-Crystalline Solids, 1992, 140: 130-133.

[14]

Khalilev VD, Ebeling P, Vinogradova NU. The Influence of Oxide Doping on Some Optical Properties of Fluoroaluminate Glasses[J]. Journal of Non-Crystalline Solids, 1996, 204: 196-201.

[15]

Tang B, Yuan X, Xue T, et al. Devitrification of TeO2-doped Fluoroaluminate Glass[J]. Journal of Materials Science & Technology, 2006, 22(4): 565-568.

[16]

Marquesi AR, Delben JRJ, Tdelben AAS. Glass Forming Ability and Thermal Stability of Oxyfluoride Glasses ZrO2−ZrF4−BaF2[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96: 403-406.

[17]

Santos FA, Delben JRJ, Delben AAST, et al. Thermal Stability and Crystallization Behavior of TiO2 Doped ZBLAN Glasses[J]. Journal of Non-Crystalline Solids, 2011, 357: 2907-2910.

[18]

Wang F, Tian Y, Jing X, et al. Effect of TeO2 Addition on Thermal Stabilities and 2.7 µm Emission Properties of Fluoroaluminate-tellurite Glass[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 165: 93-101.

[19]

Wang F, Tian Y, Cai M, et al. Glass Forming Ability and Enhanced 2.7 µm Emission of Erbium Ions in TeO2 Doped Fluoroaluminate Glass[J]. Optical Materials, 2015, 48: 133-138.

[20]

Goncharuk VK, Kavun VY, Slobodyuk AB, et al. Crystallization and Luminescence Properties of Eu3+-doped ZrF4−BaF2−NaPO3 Glass and Glass Ceramics[J]. Journal of Non-Crystalline Solids, 2018, 480: 61-69.

[21]

Akatsuka M, Shinozaki K, Nakauchi D, et al. Scintillator and Dosimeter Properties of Ce3+-Doped CaF2−AlF3−AlPO4 Glasses[J]. Optical Materials, 2019, 94: 86-91.

[22]

Lapp JC, Dumbaugh WH. Gallium Oxide Glasses[J]. Key Engineering Materials, 1994, 94–95: 257-278.

[23]

Kokubo T, Inaka Y, Sakka S. Formation and Optical Properties of (R2O or R’O)−Nb2O5−Ga2O3 Glasses[J]. Journal of Non-Crystalline Solids, 1986, 81: 337-350.

[24]

Kokubo T, Inaka Y, Sakka S. Glass Formation and Optical Properties of Glasses in the System (R2O or R’O)−Ta2O5−Ga2O3[J]. Journal of Non-Crystalline Solids, 1986, 80: 518-526.

[25]

Skopak T, Serment B, Ledemi Y, et al. Structure-properties Relationship Study in Niobium Oxide Containing GaO3/2−LaO3/2−KO1/2 Gallate Glasses[J]. Materials Research Bulletin, 2019, 112: 124-131.

[26]

Goncharuk VK, Maslennikova IG, Kharchenko VI, et al. A Study of the Glass Formation and Crystallization in the Mixed Fluorozir-conate-phosphate Systems ZrF4−BaF2(SnF2)−NaPO3[J]. Journal of Non-Crystalline Solids, 2016, 431: 118-125.

[27]

Nascimento MLF, Souza LA, Ferreira EB, et al. Can Glass Stability Parameters Infer Glass Forming Ability[J]?. Journal of Non-Crystalline Solids, 2005, 351: 3296-3308.

[28]

Mitachi S, Tick PA. Oxygen Effect on Fluoride Glass crystallization[J]. Materials Science Forum, 1991, 67–68: 169-180.

[29]

Huang F, Ma Y, Liu L, et al. Enhanced 2.7µm Emission of Er3+-doped Low Hydroxyl Fluoroaluminate-tellurite Glass[J]. Journal of Luminescence, 2015, 158: 81-85.

[30]

Lecoq A, Poulain M. Fluoride Glasses in the ZrF4−BaF2−YF3−AlF3 Quaternary System[J]. Journal of Non-Crystalline Solids, 1980, 41: 209-217.

[31]

Danh T, George S, Bernard B. Heavy Metal Fluoride Glasses and Fibers: A Review[J]. Journal of Lightwave Technology, 1984, 2: 566-586.

[32]

Zhu J, Jin H, Dong D, et al. Study on the Stability of GaF3-based Glasses by Differential Scanning Calorimetry[J]. Journal of the American Ceramic Society, 2001, 66(2): 479-487.

[33]

Dumbaugh WH, Lapp JC. Heavy Metal Oxide Glasses[J]. Journal of the American Ceramic Society, 1992, 75: 2315-2326.

[34]

Zou Y, Wang Y, Han S, et al. Effect of Chloride on Spectrum Properties of Pr3+/Ho3+ Co-doped Fluorozirconate Glasses[J]. Journal of Rare Earths, 2019, 38

[35]

Aasland S, Einarsrud MA, Grande T, et al. Spectroscopic Investigations of Fluorozirconate Glasses in the Ternary Systems ZrF4−BaF2−AF (A = Na, Li)[J]. The Journal of Physical Chemistry, 1996, 100: 5457-5463.

[36]

Efimov AM. The IR Spectra of Non-oxide Glasses of Various Types: Crucial Differences and Their Origin[J]. Journal of Non-Crystalline Solids, 1997, 213&214: 205-214.

[37]

Gnatieva LN, Surovtsev NV, Plotnichenko VG, et al. The Peculiarities of Fluoride Glass Structure. Spectroscopic Study[J]. Journal of Non-Crystalline Solids, 2007, 353: 1238-1242.

[38]

Ignatieva LN, Surovtsev NV, Merkulov EB, et al. Structure and Optical Properties of Glasses in Systems ZrF4−BiF3−BaF2-PbF2−LnF3[J]. Journal of Non-Crystalline Solids, 2012, 358: 3248-3254.

[39]

Kawamoto Y, Kanno R, Kobayshi T, Konishi A. Structural Study of ZrF4−BaF2−LnF3 Glasses (Ln=Y or Rare-earth Elements)[J]. Journal of Materials Science Letters, 1995, 14: 319-321.

[40]

Kawamoto Y, Kanno R, Kobayshi T. Structural Study of ZrF4−BaF2−LnF3 Glasses (Ln = Y or Rare-earth Elements)[J]. Journal of materials Science Letters, 1995, 14: 319-321.

[41]

Qin L, Shen ZX, Low BL, et al. Crystallization Study of Heavy Metal Fluoride Glasses ZBLAN by Raman Spectroscopy[J]. Journal of Raman Spectroscopy, 1997, 28: 495-499.

[42]

Wasylak J, Samek L. Structural Aspects of Fluorozirconate Glasses and Some of Their Properties[J]. Journal of Non-Crystalline Solids, 1991, 129: 137-144.

[43]

Ignatieva LN, Stremousova EA, Merkulov EB. Vibrational Spectroscopy Study of Fluorozirconate Glasses Containing tin Difluoride and Gallium Trifluoride[J]. Journal of Structural Chemistry, 2003, 44: 381-387.

[44]

Wang Y, Zu C, He K, et al. Effect of Ga2O3 on Structure and Properties of Calcium Aluminate Glasses[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31: 961-964.

[45]

Mcmillan P, Piriou B. Raman Spectroscopy of Calcium Aluminate Glasses and Crystals[J]. Journal of Non-Crystalline Solids, 1983, 55: 221-242.

[46]

Daniel I, McMillan PF, Gillet P, et al. Raman Spectroscopic Study of Structural Changes in Calcium Aluminate (CaAl2O4) Glass at High Pressure and Temperature[J]. Chemical Geology, 1996, 128: 0-15.

[47]

Watanabe Y, Masuno A, Inoue H, et al. Influence of Modifier Cations on the Local Environment of Aluminum in La2O3−Al2O3 and Y2O3−Al2O3 Binary Glasses[J]. Phys. Chem. Chem. Phys., 2020, 22: 19592-19599.

[48]

Konishi A, Izumi H, Kanno R, et al. Physicochemical Properties of ZrF4−BaF2−LnF3 Glasses (Ln=Y or Rare-earth Elements)[J]. Journal of Materials Science, 1994, 29: 1584-1588.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/