Substrate Effect on the Structural and Electrical Properties of LaNiO3 Thin Films

Dan Yao , Weiwei Wang , Jiangying Yu , Yuwei You

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 559 -563.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 559 -563. DOI: 10.1007/s11595-022-2566-3
Advanced Materials

Substrate Effect on the Structural and Electrical Properties of LaNiO3 Thin Films

Author information +
History +
PDF

Abstract

Epitaxial LaNiO3 (LNO) thin films prepared from the sols modified with polyethyleneimine (PEI) were grown on single-crystal LaAlO3, (LaAlO3)0.3(SrAlTaO6)0.7, and SrTiO3 substrates, respectively, using a simple polymer assisted deposition (PAD). The epitaxial structure, surface morphologies and transport of the LNO films were studied by X-ray diffraction (θ/2θ symmetric scan, ω-scan, and in-plane φ-scan), the field emission scanning electron microscopy, and a standard dc four-probe method. It is found that, compared with that of LNO bulk, the c-axis parameter of the LNO film increases under compressive strain and decreases under tensile strain. All the LNO films exhibit metal properties in the temperature-dependent resistivity. The resistivity of the LNO films shows an increasing trend with the lattice mismatch strain changing from compressive to tensile. It is suggested that the oxygen vacancy compensated by more Ni2+ changed from Ni3+ in the film increases with the strain changing from compressive to tensile, which results in the increase of the resistivity.

Keywords

nickelates / electrical properties / epitaxial film / polymer assisted deposition

Cite this article

Download citation ▾
Dan Yao, Weiwei Wang, Jiangying Yu, Yuwei You. Substrate Effect on the Structural and Electrical Properties of LaNiO3 Thin Films. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(4): 559-563 DOI:10.1007/s11595-022-2566-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song JM, Luo LH, Dai XH, et al. Switching Properties of Epitaxial La0.5Sr0.5CoO3/Na0.5Bi0.5TiO3/La0.5Sr0.5CoO3 Ferroelectric Capacitor[J]. RSC Advances, 2018, 8(8): 4372-4376.

[2]

Noguchi Y, Maki H, Kitanaka Y, et al. Control of Misfit Strain in Ferroelectric BaTiO3 Thin-film Capacitors With SrRuO3-based Electrodes on (Ba, Sr)TiO3-buffered SrTiO3 Substrates[J]. Applied Physics Letters, 2018, 113(1): 129031-129035.

[3]

Matavz A, Kovac J, Cekada M, et al. Enhanced Electrical Response in Ferroelectric Thin Film Capacitors with Inkjet-printed LaNiO3 Electrodes[J]. Applied Physics Letters, 2018, 113(1): 129041-129044.

[4]

Rajeev KP, Shivashankar GV, Raychaudhuri AK. Low-temperature Electronic Properties of a Normal Conducting Perovskite Oxide (LaNiO3)[J]. Solid State Communications, 1991, 79(7): 591-595.

[5]

Wu D, Li AD, Liu ZG, et al. Fabrication And Electrical Properties Of Sol-Gel Derived (BaSr)TiO3 Thin Films with Metallic LaNiO3 Elec trode[J]. Thin Solid Films, 1998, (336): 172–175

[6]

Wrobel F, Mark AF, Christiani G, et al. Comparative Study of LaNiO3/LaAlO3 Heterostructures Grown by Pulsed Laser Deposition And Oxide Molecular Beam Epitaxy[J]. Applied Physics Letters, 2017, 110(4): 416061-416065.

[7]

Duan ZF, Cui Y, Yang Z, et al. Growth of Highly c-axis Oriented LaNiO3 Films with Improved Surface Morphology on Si Substrate Using Chemical Solution Deposition and Rapid Heat Treatment Process[J]. Ceramics International, 2018, 44(1): 695-702.

[8]

Wakiya N, Azuma T, Shinozaki K, et al. Low-temperature Epitaxial Growth of Conductive LaNiO3 Thin Films by RF Magnetron Sputtering[J]. Thin Solid Films, 2002, 410(1): 114-120.

[9]

Li AD, Ge CZ, Lu P, et al. Preparation of Perovskite Conductive LaNiO3 Films by Metalorganic Decomposition[J]. Applied Physics Letters, 1996, 68(10): 1347-1349.

[10]

Zou GF, Zhao J, Luo HM, et al. Polymer-Assisted-Deposition: A Chemical Solution Route for a Wide Range of Materials[J]. Chemical Society Reviews, 2013, 42(2): 439-449.

[11]

Vila Fungueirino JM, Rivas Murias B, Juan Rubio Z, et al. Polymer Assisted Deposition of Epitaxial Oxide Thin Films[J]. Journal of Materials Chemistry C, 2018, 6(15): 3834-3844.

[12]

Mambrini GP, Leite ER. Structural Microstructural, and Transport Properties of Highly Oriented LaNiO3 Thin Films Deposited on SrTiO3 (100) Single Crystal[J]. Journal of Applied Physics, 2007, 102(4): 437081-437084.

[13]

Escote MT, Pontes FM, Leite ER, et al. Microstructural and Transport Properties of LaNiO3 Films Grown on Si (111) by Chemical Solution Deposition[J]. Thin Solid Films, 2003, 445(1): 54-58.

[14]

Jin San C, Chang Won A, Jong-Seong B, et al. Identifying a Perovskite Phase in Rare-Earth Nickelates Using X-ray Photoelectron Spectroscopy[J]. Current Applied Physics, 2020, 20(1): 102-105.

[15]

Jin San C, Muhammad S, Jong-Seong B, et al. Effect of Ceramic-target Crystallinity on Metal-to-insulator Transition of Epitaxial Rare-earth Nickelate Films Grown by Pulsed Laser Deposition[J]. ACS Applied Electronic Materials, 2019, 1(9): 1952-1958.

[16]

Qiao L, Bi XF. Direct Observation of Ni3+ And Ni2+ in Correlated LaNiO3 Films[J]. EPL, 2011, 93: 570021-570026.

[17]

Feungyang H, Chadol O, Junwoo S, et al. Influence of Tensile-Strain-Induced Oxygen Deficiency on Metal-Insulator Transitions in NdNiO3−δ Epitaxial Thin Films[J]. Scientific Reports, 2017, 7: 46811-46819.

[18]

Aschauer U, Pfenninger R, Selbach SM, et al. Strain-Controlled Oxygen Vacancy Formation and Ordering in CaMnO3[J]. Physical Review B, 2013, 88: 0541111-0541117. 5)

[19]

Akihiro K, Sidney Y, Bilge Y. Competing Strain Effects in Reactivity of LaCoO3 With Oxygen[J]. Physical Review B, 2010, 82: 1154351-1154356. (11)

[20]

Torrance JB, Lacorre P, Nazzal AI, et al. Systematic Study of Insulator-Metal Transitionsin Perovskites RniO3(R=Pr, Nd, Sm, Eu) due to Closing of Charge-Transfer Gap[J]. Physical Review B, 1992, 45(14): 8209-8212.

[21]

Sanchez RD, Causa MT, Caneiro A, et al. Metal-Insulator Transition in Oxygen-Deficient LaNiO3−X Perovskites[J]. Physical Review B, 1996, 54(23): 16574-16578.

AI Summary AI Mindmap
PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/