High-temperature Thermal Properties and Wear Behavior of Basalt as Heat Storage Material for Concentrated Solar Power Plants

Jun Liao , Xupeng Zhu , Jianan Li , Shuwen Xue , Changwei Zou , Jun Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 547 -553.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (4) : 547 -553. DOI: 10.1007/s11595-022-2564-5
Advanced Materials

High-temperature Thermal Properties and Wear Behavior of Basalt as Heat Storage Material for Concentrated Solar Power Plants

Author information +
History +
PDF

Abstract

The microstructures, components, thermal stability, specific heat capacity and thermal conductivity of basalt sample were studied. Besides, as a comprehensive result of thermal expansion and contraction process, both the friction coefficient and wear rate of the basalt sample were also characterized. Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants, and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment.

Keywords

thermal energy storage / concentrated solar power / basalt / wear rate

Cite this article

Download citation ▾
Jun Liao, Xupeng Zhu, Jianan Li, Shuwen Xue, Changwei Zou, Jun Zhang. High-temperature Thermal Properties and Wear Behavior of Basalt as Heat Storage Material for Concentrated Solar Power Plants. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(4): 547-553 DOI:10.1007/s11595-022-2564-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Administration U. International Energy Outlook 2013: With Projections to 2040[R], 2013 Washington: US Energy Information Administration.

[2]

Gutierrez A, Miró L, Gil A, et al. Advances in the Valorization of Waste and by-product Materials as Thermal Energy Storage (TES) Materials[J]. Renew. Sust. Energ. Rev., 2016, 59: 763-783.

[3]

Singh GK. Solar Power Generation by PV (photovoltaic) Technology: A Review[J]. Energy, 2013: 53 1–13

[4]

Cheng TC, Hung WC, Fang TH. Two-axis Solar Heat Collection Tracker System for Solar Thermal Applications[J]. Int. J. Photoenergy, 2013, 2013: 803457.

[5]

Lv YX, Si PF, Rong XY, et al. Determination of Optimum Tilt Angle and Orientation for Solar Collectors based on Effective Solar Heat Collection[J]. Appl. Energ., 2018, 219: 11-19.

[6]

Golding EW. The Generation of Electricity by Wind Power [M], 1976 London, England: E. and F. N. Spon Ltd.

[7]

Foley AM, Leahy PG, Marvuglia A, et al. Current Methods and Advances in Forecasting of Wind Power Generation[J]. Renew. Energ., 2012, 37: 1-8.

[8]

Dehghani M, Riahi-Madvar H, Hooshyaripor F, et al. Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-fuzzy Inference System[J]. Energies, 2019, 12: 289.

[9]

Oh HS. Optimal Planning to Include Storage Devices in Power Systems[J]. IEEE T. Power Syst., 2011, 26(3): 1118-1128.

[10]

Liu C, Li F, Ma LP, et al. Advanced Materials for Energy Storage[J]. Adv. Mater., 2010, 22(8): E28-E62.

[11]

Liu X, Fang GY, Chen Z. Dynamic Charging Characteristics Modeling of Heat Storage Device with Heat Pipe[J]. Appl. Therm. Eng., 2011, 31: 2902-2908.

[12]

Romanovsky G, Mutale J. Implementation of Heat Production and Storage Technology and Devices in Power Systems[J]. Appl. Therm. Eng., 2012, 48: 296-300.

[13]

Jelley N, Smith T. Concentrated Solar Power: Recent Developments and Future Challenges[J]. P. I. Mech. Eng. A-J. Pow., 2015, 229(A7): 693-713.

[14]

Kuravi S, Trahan J, Goswami DY, et al. Thermal Energy Storage Technologies and Systems for Concentrating Solar Power Plants[J]. Prog. Energ. Combust., 2013, 39(4): 285-319.

[15]

Huang X, Wang ZF, Li YH, et al. Solar Thermal Power Generation Technology[M], 2013 Beijing, China: China Electric Power Press.

[16]

Wang YZ, Wang Y, Li HP, et al. Thermal Properties and Friction Behaviors of Slag as Energy Storage Material in Concentrate Solar Power Plants[J]. Sol. Energ. Mat. Sol. C., 2018, 182: 21-29.

[17]

Giaconia A, Iaquaniello G, Metwally AA, et al. Experimental Demonstration and Analysis of a CSP Plant with Molten Salt Heat Transfer Fluid in Parabolic Troughs[J]. Sol. Energy, 2020, 211: 622-632.

[18]

Tiskatine R, Oaddi R, Cadi RAE, et al. Suitability and Characteristics of Rocks for Sensible Heat Storage in CSP Plants[J]. Sol. Energ. Mat. Sol. C., 2017, 169: 245-257.

[19]

Medrano M, Gil A, Martorell I, et al. State of the Art on High-temperature Thermal Energy Storage for Power Generation. Part 2-Case Studies[J]. Renew. Sust. Energ. Rev., 2010, 14(1): 56-72.

[20]

Waples DW, Waples JS. A review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks[J]. Nat. Resour. Res., 2004, 13(2): 97-122.

[21]

Grirate H, Zari N, Elamrani I, et al. Characterization of Several Moroccan Rocks Used as Filler Material for Thermal Energy Storage in CSP Power Plants[J]. Energy Procedia., 2014, 49: 810-819.

[22]

Eppelbaum L, Kutasov I, Pilchin A. Thermal Properties of Rocks and Density of Fluids. Applied Geothermics. Lecture Notes in Earth System Sciences[M], 2014 Berlin, Heidelberg, Germany: Springer.

[23]

Stylianou II, Tassou S, Christodoulides P, et al. Measurement and Analysis of Thermal Properties of Rocks for the Compilation of Geothermal Maps of Cyprus[J]. Renew. Energy, 2016, 88: 418-429.

[24]

Nahhas T, Py X, Sadiki N. Experimental Investigation of Basalt Rocks as Storage Material for High-temperature Concentrated Solar Power Plants[J]. Renew. Sust. Energ. Rev., 2019, 110: 226-235.

[25]

Mostafa MS, Afify N, Gaber A, et al. Investigation of Thermal Properties of Some Basalt Samples in Egypt[J]. J. Therm. Anal. Calorim., 2004, 75(1): 179-188.

[26]

Chen XY, Chen LH, Chen Y, et al. Distribution Summary of Cenozoic Basalts in Central and Easternchina[J]. Geol. J. China Univ., 2014, 20(4): 507-517.

[27]

Ho KS, Chen JC, Juang WS. Geochronology and Geochemistry of Late Cenozoic Basalts from the Leiqiong Area, Southern China[J]. J. Asian Earth Sci., 2000, 18(3): 307-324.

[28]

Weather in China[EB/OL]. http://www.weather.com.cn/

[29]

China Meteorological Administration Meteorological Data Center[EB/OL]. http://data.cma.cn/

[30]

Irradiation and Meteorological Parameters Throughout the Country[EB/OL]. https://www.docin.com/p-1958325098.html

[31]

Zhanjiang Citizen Building Solar Energy Photothermal Building Integrated Application Technical Guidance Opinions[EB/OL]. http://jz.docin.com/p-787628946.html

[32]

Wen SZ, Huang P. Principles of Tribology[M], 1975 London, England: Macmillan Publishers Ltd.

[33]

Ortega-Fernández I, Calvet N, Gil A, et al. Thermophysical Characterization of a By-product from the Steel Industry to be used as a Sustainable and Low-cost Thermal Energy Storage Material[J]. Energy, 2015, 89: 601-609.

[34]

Nishioka K, Maeda T, Shimizu M. Application of Square-wave Pulse Heat Method to Thermal Properties Measurement of CaO−SiO2−Al2O3 System Fluxes[J]. ISIJ Int., 2006, 46(3): 427-433.

[35]

Herrmann U, Kearney DW. Survey of Thermal Energy Storage for Parabolic Trough Power Plants[J]. ASME J. Sol. Energy Eng., 2002, 124(2): 145-152.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/