A Duplex Grain Structure of Dense (K, Na)NbO3 Ceramics Constructed by Using Microcrystalline as Seed

Liangliang Liu , Xinyu Jiang , Lü Rui , Zhuangzhuang Guo , Zhaoping Hou

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 385 -392.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 385 -392. DOI: 10.1007/s11595-022-2543-x
Advanced Materials

A Duplex Grain Structure of Dense (K, Na)NbO3 Ceramics Constructed by Using Microcrystalline as Seed

Author information +
History +
PDF

Abstract

A new raw material was developed for the preparation of dense (K, Na)NbO3 (KNN) ceramics. In the absence of dopants, two kinds of KNN powder, calcined and microcrystalline powder, were used as matrix and seed to construct a duplex grain structure. The former was synthesized by the traditional solid phase reaction method and the latter by molten salt method. The effects of microcrystalline powder content on sintering behavior, microstructure and electric properties were investigated. It was found that appropriate microcrystalline powder content (x=0.4) promoted the grain growth and the gas diffusion, which resulted in a denser duplex grain structure and obtained a wide sintering temperature range. This work gives a basic raw material system for the development of high performance KNN ceramics. In addition, it also provides a new way to prepare dense ceramics by the design of a duplex structure.

Keywords

niobate / piezoelectric ceramics / microstructure / microcrystalline

Cite this article

Download citation ▾
Liangliang Liu, Xinyu Jiang, Lü Rui, Zhuangzhuang Guo, Zhaoping Hou. A Duplex Grain Structure of Dense (K, Na)NbO3 Ceramics Constructed by Using Microcrystalline as Seed. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(3): 385-392 DOI:10.1007/s11595-022-2543-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Panda P K, Sahoo B. PZT to Lead Free Piezo Ceramics: A Review[J]. Ferroelectrics, 2015, 474: 128-143.

[2]

Tao H, Wu H J, Liu Y, et al. Ultrahigh Performance in Lead-free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence[J]. J. Am. Chem. Soc., 2019, 141: 13987-13994.

[3]

Saito Y, Takao H, Tani T, et al. Lead-free Piezoceramics[J]. Nature, 2004, 432: 84.

[4]

Wang K, Yao F Z, Jo W, et al. Temperature-insensitive (K,Na)NbO3-based Lead-free Piezoactuator Ceramics[J]. Adv. Funct. Mater, 2013, 23: 4079-4086.

[5]

Xu K, Li J, Lv X, et al. Superior Piezoelectric Properties in Potassium-sodium Niobate Lead-free Ceramics[J]. Adv. Mater., 2016, 28: 8519-8523.

[6]

Li P, Zhai J W, Shen B, et al. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3-based Lead-free Ceramics[J]. Adv. Mater., 2018, 30: 1705171.

[7]

Patricia P G, Norbert S, Eckhard Q. Suppression of Abnormal Grain Growth in K0.5Na0.5NbO3: Phase Transitions and Compatibility[J]. Sci. Rep., 2019, 9: 19775.

[8]

Zhen Y H, Li J F. Abnormal Grain Growth and New Core-shell Structure in (K,Na)NbO3-based Lead-free Piezoelectric Ceramics[J]. J. Am. Ceram. Soc., 2007, 90: 3496-3502.

[9]

Chen J C, Wu W, Su S, et al. Phase Structure, Microstructure and Electrical Properties of KxNa(1−x)NbO3 Piezoelectric Ceramics with Different K/Na Ratio[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 30-34.

[10]

Mahdi R, Al-Bahnam N J, Ajeel M A, et al. High-performance (K,Na) NbO3-based Binary Lead-free Piezoelectric Ceramics Modified with Acceptor Metal Oxide[J]. Ceram. Inter., 2020, 46: 21762-21770.

[11]

Wang H, Zhai X, Xu J W, et al. Effect of Sintering Time on Structure and Properties in CuO-doping KNN-LS-BF Piezoelectric Ceramics[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(2): 308-311.

[12]

Pinho R, Tkach A, Zlotnik S, et al. Spark Plasma Texturing: a Strategy to Enhance the Electro-mechanical Properties of Lead-free Potassium Sodium Niobate Ceramics[J]. Appl. Mater. Today, 2020, 19: 100566.

[13]

Acker J, Kungl H, Schierholz R, et al. Microstructure of Sodium-potassium Niobate Ceramics Sintered under High Alkaline Vapor Pressure Atmosphere[J]. J. Eur. Ceram. Soc., 2014, 34: 4213-4221.

[14]

Malic B, Koruza J, Hrescak J, et al. Sintering of Lead-free Piezoelectric Sodium Potassium Niobate Ceramics[J]. Materials, 2015, 8: 8117-8146.

[15]

Hao J G, Li W, Zhai J W, et al. Progress in High-strain Perovskite Piezoelectric Ceramics[J]. Mat. Sci. Eng. R., 2019, 135: 1-57.

[16]

Zheng T, Wu J G, Xiao D Q, et al. Recent Development in Lead-free Perovskite Piezoelectric Bulk Materials[J]. Prog. Mater. Sci., 2018, 98: 552-624.

[17]

Wang K, Li J F. (K, Na)NbO3-based Lead-free Piezoceramics: Phase Transition, Sintering and Property Enhancement[J]. J. Adv. Ceram., 2012, 1: 24-37.

[18]

Yang Z T, Gao F, Du H L, et al. Grain Size Engineered Lead-free Ceramics with both Large Energy Storage Density and Ultrahigh Mechanical Properties[J]. Nano Energy, 2019, 58: 768-777.

[19]

Zhang J L, Sun X, Su W B, et al. Superior Piezoelectricity and Rhombohedral-orthorhombic-tetragonal Phase Coexistence of (1−x)(K,Na) (Nb,Sb)O3x(Bi,Na)HfO3 Ceramics[J]. Scripta Mater., 2020, 176: 108-111.

[20]

Liu X F, Fechler N, Antonietti M. Salt Melt Synthesis of Ceramics, Semiconductors and Carbon Nanostructures[J]. Chem. Soc. Rev., 2013, 42: 8237-8265.

[21]

Sui W M, Yu H Y, Luan S J, et al. Preparation and Characterization of Bi4Ti3O12 Platelets by a Novel Low-temperature Molten Salt System[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2009, 24(2): 241-244.

[22]

Lv R, Liu L L, Wang Y, et al. A-site Cation and Morphology Control of KSr2Nb5O15 Microcrystalline by a Modified Molten Salt Method[J]. Adv. Powder Technol., 2020, 31: 3256-3266.

[23]

Liu L L, Lv R, Guo Z Z, et al. Fabrication of Columnar NaNbO3-based Particles through Topochemical Microcrystal Conversion[J]. Electron. Mater. Lett., 2020, 16: 55-60.

[24]

Liu L L, Zhang Y M, Hou Z P, et al. Formation Process of a Duplex Structure in KSr2Nb5O15 Ferroelectric Ceramics[J]. J. Mater. Sci.:Mater. El., 2016, 27: 11055-11063.

[25]

Liu L L, Gao F, Hu G X, et al. Effect of Excess Nb2O5 on the Growth Behavior of KSr2Nb5O15 Particles by Molten Salt Synthesis[J]. Powder Technol., 2013, 235: 806-813.

[26]

Su Y L, Chen X M, Yu Z D, et al. Comparative Study on Microstructure and Electrical Properties of (K0.5Na0.5)NbO3 Lead-free Ceramics Prepared via Two Different Sintering Methods[J]. J. Mater. Sci., 2017, 52: 2934-2943.

[27]

Hu C Z, Zhu Q H, Sun Z, et al. Dielectric Properties of Unfilled Tetragonal Tungsten Bronze Ba4PrFe0.5Nb9.5O30 Ceramics[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(4): 904-909.

[28]

Liao Y, Wang D M, Wang H, et al. Modulation of Defects and Electrical Behaviors of Cu-Doped KNN Ceramics by Fluorine-Oxygen Substitution[J]. Dalton T., 2020, 49: 1311-1318.

[29]

Ren XB, Otsuka K. Universal Symmetry Property of Point Defects in Crystals[J]. Phys. Rev. Lett., 2000, 85: 1016-1019.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/