Indenter Size Effect on Stress Relaxation Behaviors of Surface-modified Silicon: A Molecular Dynamics Study

Juan Chen , Liang Fang , Huiqin Chen , Kun Sun , Jing Han

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 370 -377.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 370 -377. DOI: 10.1007/s11595-022-2541-z
Advanced Materials

Indenter Size Effect on Stress Relaxation Behaviors of Surface-modified Silicon: A Molecular Dynamics Study

Author information +
History +
PDF

Abstract

Long-lasting constant loading commonly exists in silicon-based microelectronic contact and can lead to the appearance of plastic deformation. Stress relaxation behaviors of monocrystalline silicon coated with amorphous SiO2 film during nanoindentation are probed using molecular dynamics simulation by varying the indenter’s size. The results show that the indentation force (stress) declines sharply at the initial and decreases almost linearly toward the end of holding for tested samples. The amount of stress relaxation of SiO2/Si samples indented with different indenters during holding increases with growing indenter size, and the corresponding plastic deformation characteristics are carefully analyzed. The deformation mechanism for confined amorphous SiO2 film is depicted based on the amorphous plasticity theories, revealing that the more activated shear transformation zones(STZs) and free volume within indented SiO2 film promote stress relaxation. The phase transformation takes place to monocrystalline silicon, the generated atoms of Si-II and bct-5 phases within monocrystalline silicon substrate during holding are much higher than those for smaller indenter.

Keywords

SiO2/Si bilayer composite / stress relaxation behaviors / plastic deformation / molecular dynamics simulation / phase transformation

Cite this article

Download citation ▾
Juan Chen, Liang Fang, Huiqin Chen, Kun Sun, Jing Han. Indenter Size Effect on Stress Relaxation Behaviors of Surface-modified Silicon: A Molecular Dynamics Study. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(3): 370-377 DOI:10.1007/s11595-022-2541-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du X, Zhao H, Zhang L, et al. Molecular Dynamics Investigations of Mechanical Behaviours in Monocrystalline Silicon due to Nanoindentation at Cryogenic Temperatures and Room Temperature[J]. Scientific Reports, 2015, 5(1): 16275

[2]

Blasco X, Hill D, Porti M, et al. Topographic Characterization of AFM-grown SiO2 on Si[J]. Nanotechnology, 2001, 12(2): 110-112.

[3]

Cao Z Q, Zhang X. Density Change and Viscous Flow during Structural Relaxation of Plasma-enhanced Chemical-vapor-deposited Silicon Oxide Films[J]. J. Appl. Phys., 2004, 96(8): 4273-4280.

[4]

Chudoba T, Richter F. Investigation of Creep Behaviour under Load during Indentation Experiments and Its Influence on Hardness and Modulus Results[J]. Surface & Coatings Technology, 2001, 148(2–3): 191-198.

[5]

Wang C, Cao Q P, Wang X D, et al. Time-dependent Shear Transformation Zone in Thin Film Metallic Glasses Revealed by Nanoindentation Creep[J]. Journal of Alloys and Compounds., 2017, 696(1): 239-245.

[6]

Li H, Ngan A H W. Size Effects of Nanoindentation Creep[J]. Journal of Materials Research., 2011, 19(02): 513-522.

[7]

Shi J, Chen J, Fang L, et al. Atomistic Scale Nanoscratching Behavior of Monocrystalline Cu Influenced by Water Film in CMP Process[J]. Applied Surface Science, 2018, 435(1): 983-992.

[8]

Yamakov V, Wolf D, Phillpot S R, et al. Grain-boundary Diffusion Creep in Nanocrystalline Palladium by Molecular-dynamics Simulation[J]. Acta Materialia., 2002, 50(1): 61-73.

[9]

Wang F, Li J M, Huang P, et al. Nanoscale Creep Deformation in Zr-based Metallic Glass[J]. Intermetallics, 2013, 38(1): 156-160.

[10]

Spaepen F. Homogeneous Flow of Metallic Glasses: A Free Volume Perspective[J]. Scripta Materialia., 2006, 54(3): 363-367.

[11]

Spaepen F. Microscopic Mechanism for Steady-state Inhomogeneous Flow in Metallic Glasses[J]. Acta Metallurgica., 1977, 25(4): 407-415.

[12]

Argon A S. Plastic Deformation in Metallic Glasses[J]. Acta Metallurgica, 1979, 27(1): 47-58.

[13]

Schuh C A, Lund A C. Atomistic Basis for the Plastic Yield Criterion of Metallic Glass[J]. Nature Materials, 2003, 2(7): 449-452.

[14]

Yoo B-G, Kim K-S, Oh J-H, et al. Room Temperature Creep in Amorphous Alloys: Influence of Initial Strain and Free Volume[J]. Scripta Materialia., 2010, 63(12): 1205-1208.

[15]

Huang Y J, Shen J, Chiu Y L, et al. Indentation Creep of an Fe-based Bulk Metallic Glass[J]. Intermetallics, 2009, 17(4): 190-194.

[16]

Cao Z H, Li P Y, Meng X K. Nanoindentation Creep Behaviors of Amorphous, Tetragonal, and BCC Ta Films[J]. Materials Science and Engineering: A, 2009, 516(1–2): 253-258.

[17]

Taylor T A, Barrett C R. Creep and Recovery of Silicon Single-crystals[J]. Materials Science and Engineering, 1972, 10(2): 93

[18]

Shikimaka O, Prisacaru A, Bruk L, et al. Influence of Loading Holding Time under Quasistatic Indentation on Electrical Properties and Phase Transformations of Silicon[J]. Surface Engineering and Applied Electrochemistry, 2012, 48(5): 444-449.

[19]

Shikimaka O, Prisacaru A, Burlacu A. Effect of Long-term Holding under Contact Loading on the Specific Features of Phase Changes in Silicon[J]. Materials Science, 2015, 51(3): 405-411.

[20]

Gerbig Y B, Michaels C A, Cook R F. In Situ Observations of Berkovich Indentation Induced Phase Transitions in Crystalline Silicon Films[J]. Scripta Materialia., 2016, 120(1): 19-22.

[21]

Chowdhury S C, Haque B Z, Gillespie J W Jr.. Molecular Dynamics Simulations of the Structure and Mechanical Properties of Silica Glass Using ReaxFF[J]. Journal of Materials Science, 2016, 51(22): 10139-10159.

[22]

Tersoff J. Modeling Solid-state Chemistry — Interatomic Potentials for Multicomponent Systems[J]. Physical Review B., 1989, 39(8): 5566-5568.

[23]

Munetoh S, Motooka T, Moriguchi K, et al. Interatomic Potential for Si−O Systems Using Tersoff Parameterization[J]. Computational Materials Science, 2007, 39(2): 334-339.

[24]

Zhao S, Xue J. Modification of Graphene Supported on SiO2 Substrate with Swift Heavy Ions From Atomistic Simulation Point[J]. Carbon, 2015, 93(1): 169-179.

[25]

Wang J, Rajendran A M, Dongare A M. Atomic Scale Modeling of Shock Response of Fused Silica and Alpha-quartz[J]. Journal of Materials Science, 2015, 50(24): 8128-8141.

[26]

Shi J, Chen J, Wei X, et al. Influence of Normal Load on the Three-body Abrasion Behaviour of Monocrystalline Silicon with Ellipsoidal Particle[J]. RSC Advances, 2017, 7(49): 30929-30940.

[27]

Plimpton S. Fast Parallel Algorithms for Short-range Molecular-dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.

[28]

Chen J, Shi J, Wang Y, et al. Nanoindentation and Deformation Behaviors of Silicon Covered with Amorphous SiO2: A Molecular Dynamics Study[J]. RSC Advances, 2018, 8(23): 12597-12607.

[29]

Chen J, Shi J Q, Chen Z, et al. Mechanical Properties and Deformation Behaviors of Surface-modified Silicon: A Molecular Dynamics Study[J]. Journal of Materials Science, 2019, 54(4): 3096-3110.

[30]

Chen J, Shi J, Zhang M, et al. Effect of Indentation Speed on Deformation Behaviors of Surface Modified Silicon: A Molecular Dynamics Study[J]. Computational Materials Science, 2018, 155(1): 1-10.

[31]

Zarudi I, Zhang L C. Structure Changes in Mono-crystalline Silicon Subjected to Indentation-experimental Findings[J]. Tribology International, 1999, 32(12): 701-712.

[32]

Goel S, Faisal N H, Luo X, et al. Nanoindentation of Polysilicon and Single Crystal Silicon: Molecular Dynamics Simulation and Experimental Validation[J]. Journal of Physics D-Applied Physics, 2014, 47(27): 275304

[33]

Sun J, Li C, Jing H, et al. Nanoindentation Induced Deformation and Pop-in Events in a Silicon Crystal: Molecular Dynamics Simulation and Experiment[J]. Scientific Reports, 2017, 7(1): 10282

[34]

Sun J, Xu B, Zhuo X, et al. Investigation of Indenter-Size-Dependent Nanoplasticity of Silicon by Molecular Dynamics Simulation[J]. Acs Applied Electronic Materials, 2020, 2(9): 3039-3047.

[35]

Han J, Song Y, Tang W, et al. Reveal the Deformation Mechanism of (110) Silicon from Cryogenic Temperature to Elevated Temperature by Molecular Dynamics Simulation[J]. Nanomaterials, 2019, 9(11): 1632

[36]

Chen J, Fang L, Zhang M, et al. Stress Relaxation Behaviors of Monocrystalline Silicon Coated with Amorphous SiO2 Film: A Molecular Dynamics Study[J]. Acta Mechanica Solida Sinica, 2021, 34(4): 506-515.

[37]

Chen J, Fang L, Sun K, et al. Creep Behaviors of Surface-modified Silicon: A Molecular Dynamics Study[J]. Computational Materials Science, 2020, 176(1): 109494

[38]

Han J, Xu S, Sun J, et al. Pressure-induced Amorphization in the Nanoindentation of Single Crystalline silicon[J]. RSC Advances, 2017, 7(3): 1357-1362.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/