In-situ Synthesis of Cr3C2 Nanosheets by Carbon Reduction Route from Cr2AlC

Baoyan Liang , Zhen Dai , Wangxi Zhang , Mingli Jiao , Xiaochen Feng , Yanli Zhang , Ying Liu , Ruijie Zhang , Li Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 364 -369.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 364 -369. DOI: 10.1007/s11595-022-2540-0
Advanced Materials

In-situ Synthesis of Cr3C2 Nanosheets by Carbon Reduction Route from Cr2AlC

Author information +
History +
PDF

Abstract

Carbon black and Cr2AlC were used as raw materials to obtain a large number of Cr3C2 nanosheets by means of the molten salt heat treatment at 1 100 °C for 1.5 hours. Results showed that carbon black can promote the decomposition of a large number of Cr2AlC to form Cr3C2 and Cr7C3 nanoparticles at 1 100 °C in the absence of molten salt. Under a molten salt environment, carbon black can promote the complete decomposition of Cr2AlC to form Cr3C2 and Cr7C3 nanosheets. The thickness of chromium carbide nanosheets is approximately 10–20 nm, and the length is approximately 100–200 nm. The addition of excess carbon black can promote the complete decomposition of Cr2AlC into a material with Cr3C2 as the main phase.

Keywords

nanosheets / Cr3C2 / carbon black / molten salt synthesis

Cite this article

Download citation ▾
Baoyan Liang, Zhen Dai, Wangxi Zhang, Mingli Jiao, Xiaochen Feng, Yanli Zhang, Ying Liu, Ruijie Zhang, Li Yang. In-situ Synthesis of Cr3C2 Nanosheets by Carbon Reduction Route from Cr2AlC. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(3): 364-369 DOI:10.1007/s11595-022-2540-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, Gao Y, Xiao B, et al. The Electronic, Mechanical Properties and Theoretical Hardness of chromium Carbides By First-Principles Calculations[J]. J. Alloy. Compd., 2011, 509(17): 5242-5249.

[2]

Loubière S, Laurent CH, Bonino JP, et al. Elaboration, Microstructure and Reactivity of Cr3C2 Powders of Different Morphology[J]. Mater. Res. Bull., 1995, 30(12): 1535-1546.

[3]

Detroye M, Reniers F, Herman CB, et al. Synthesis and Characterisation of Chromium Carbides[J]. Appl. Surf. Sci, 1997, 120(1–2): 85-93.

[4]

Poetschke J, Richter V, Holke R. Influence and Effectivity of VC and Cr3C2 Grain Growth Inhibitors on Sintering of Binderless Tungsten Carbide[J]. Int. J. Refract. Met. Hard. Mater., 2012, 31: 218-223.

[5]

Laima L, Jia YU, Shaoguang L, et al. Thermal Shock Resistances of Femncr/Cr3C2 Coatings Deposited by Arc Spraying[J]. J. Wuhan. Univer. Tech, 2010, 25(2): 243-247.

[6]

Berger LM, Stolle S, Gruner W, et al. Investigation of the Carbothermal Reduction Process of Chromium Oxide by Micro- and Lab-Scale Methods[J]. Int. J. Refract. Met. Hard. Mater, 2001, 19(2): 109-121.

[7]

Anacleto N, Ostrovski O. Solid-State Reduction of Chromium Oxide by Methane-Containing Gas[J]. Metall. Mater. Trans. B, 2004, 35(4): 609-615.

[8]

Fantozzi D, Matikainen V, Uusitalo M, et al. Chlorine Induced High-Temperature Corrosion Mechanisms in HVOF and HVAF Sprayed Cr3C2-Based Hardmetal Coatings[J]. Corros. Sci., 2019, 160: 108166.

[9]

Hirota K, Mitani K, Yishinaka M, et al. Simultaneous Synthesis and Consolidation of Chromium Carbides (Cr3C2, Cr7C3 And Cr23C6) by Pulsed Electric-Current Pressure Sintering[J]. Mater. Sci. Eng. A, 2005, 399(1–2): 154-160.

[10]

Li L, Tang J. Synthesis of Cr7C3 and Cr3C2 by Mechanical Alloying[J]. J. All. Compd., 1994, 9: L1.

[11]

Kunrath AO, Reimanis IE, Moore JJ. Combustion Synthesis of TiC−Cr3C2 Composites[J]. J. All. Compd., 2001, 329(1–2): 131-135.

[12]

Novoselov KS, Geim AK, Morozov SV, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306: 666-669.

[13]

Sedlák R, Kovalčíková A, Girman V, et al. Fracture Characteristics of SiC/Grapheme Platelet Composites[J]. J. Eur. Ceram. Soc., 2017, 37: 4307-4314.

[14]

Yin ZB, Yuan JT, Xu WW, et al. Graphene Nanosheets Toughened TiB2-Based Ceramic Tool Material By Spark Plasma Sintering[J]. Ceram. Int., 2018, 44: 8977-8982.

[15]

Luo GQ, Huang J, Jin ZP, et al. Study on Microstructure and Mechanical Performance of Cu−Sno2−MgO Based Composites Prepared by Plasma Activated Sintering[J]. J. Wuhan. Univer. Tech, 2015, 30(6): 1152-1158.

[16]

Selloni A, Carnevali P, Car R, et al. Localization, Hopping, and Diffusion of Electrons in Molten Salts[J]. Phys. Rev. Lett., 1987, 59(7): 823-826.

[17]

Weng W, Wang M Y, Gong X Z, et al. Electrochemical Preparation of V2O3 from NaVO3 and Its Reduction Mechanism[J]. J. Wuhan. Univer. Tech., 2017, 32(5): 1019-1024.

[18]

Chai ZN, Ding J, Deng CJ, et al. Ni-Catalyzed Synthesis of Hexagonal Plate-Like Alpha Silicon Nitride from Nitridation of Si Powder in Molten Salt Media[J]. Adv. Powd. Tech, 2016, 27: 1637-1644.

[19]

Gai JL, Chen JX, Zhang H, et al. Synthesis of Al2OC Whiskers by Heat Treating Bulk Ti3AlC2 in A Carbon-Containing Environment[J]. Mat. Lett., 2016, 167: 73-76.

[20]

Racault C, Langlais F, Naslain R, et al. Solid-State Synthesis and Characterization of the Ternary Phase Ti3SiC2[J]. J. Mater. Sci., 1994, 29: 3384-3392.

[21]

Duong TC, Talapatra A, Son W, et al. On the Stochastic Phase Stability of Ti2AlC−Cr2AlC[J]. Sci. Rep., 2017, 5138: 1-7.

[22]

Ye DL, HU JH. Practical Inorganic Thermodynamic Data Book[M], 2002 Beijing: Metallurgical Industry Publishing.

[23]

Wang WJ, Gauthier-Brunet V, Bei GP, et al. Powder Metallurgy Processing and Compressive Properties of Ti3AlC2/Al Composites[J]. Mater. Sci. Eng. A, 2011, 530: 168-173.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/