Simulations of Tapered Channel in Multilayer Graphene as Reverse Osmosis Membrane for Desalination

Tianzhen Wang , Bo Chen , Xingyu Shao , Huai Zheng , Xuejiao Hu , Haifeng Jiang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 314 -323.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (3) : 314 -323. DOI: 10.1007/s11595-022-2533-z
Advanced Materials

Simulations of Tapered Channel in Multilayer Graphene as Reverse Osmosis Membrane for Desalination

Author information +
History +
PDF

Abstract

Pressure-driven reverse osmosis membrane has important application in seawater desalination. Inspired by the structure of aquaporin, we established and studied the mechanism of the structure of multilayer graphene with tapered channels as reverse osmosis. The water flux of multilayer graphene with tapered channels was about 20% higher than that of parallel graphene channel. The flow resistance model was established, and the relationship between flow resistance and opening angles was clarified. The relationship between flow resistance and outlet size was also described. By means of molecular dynamics simulation, slip coefficients of multilayer graphene with tapered channel were obtained and verified by the contact angle of water. Results show that the permeability of graphene with tapered channel is about three orders of magnitude higher than that of commercial reverse osmosis membrane and the desalination rate is 100%. Temperature difference between the two sides of the tapered channel will promote the water flux positively.

Keywords

multilayer graphene / molecular dynamics / tapered channel / opening angles / reverse osmosis

Cite this article

Download citation ▾
Tianzhen Wang, Bo Chen, Xingyu Shao, Huai Zheng, Xuejiao Hu, Haifeng Jiang. Simulations of Tapered Channel in Multilayer Graphene as Reverse Osmosis Membrane for Desalination. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(3): 314-323 DOI:10.1007/s11595-022-2533-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Elimelech M, Phillip W A. The Future of Seawater Desalination: Energy, Technology, and the Environment [J]. Science, 2011, 333(6043): 712-717.

[2]

Ghaffour N, Missimer T M, Amy G L. Technical Review and Evaluation of the Economics of Water Desalination: Current and Future Challenges for Better Water Supply Sustainability[J]. Desalination, 2013, 309(1): 197-207.

[3]

Subramani A, Jacangelo J G. Emerging Desalination Technologies for Water Treatment: A Critical Review[J]. Water Res., 2015, 75(1): 164-187.

[4]

Aghigh A, Alizadeh V, Wong H Y, et al. Recent Advances in Utilization of Graphene for Filtration and Desalination of Water: A Review[J]. Desalination, 2015, 365(1): 389-397.

[5]

Daneshnia S, Adeli M, Mansourpanah Y. Gram Scale and Room Temperature Functionalization of Boron Nitride Nanosheets for Water Treatment [J]. Nano, 2019, 14(8): 1950107

[6]

Yu T, Xu Z, Liu S, et al. Enhanced Hydrophilicity and Water-Permeating of Functionalized Graphene-Oxide Nanopores: Molecular Dynamics Simulations[J]. J. Membr. Sci., 2018, 550(1): 510-517.

[7]

Buelke C, Alshami A, Casler J, et al. Evaluating Graphene Oxide and Holey Graphene Oxide Membrane Performance for Water Purification[J]. J. Membr. Sci., 2019, 588(1): 117195

[8]

Li M, Cheng P, Liu C, et al. Effect of Graphene Surface Functional Groups on the Mechanical Property of Pmma Microcellular Composite Foams[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(3): 717-722.

[9]

Xiao L, Zhao M, Hu H. Study on Graphene Oxide Modified Inorganic Phase Change Materials and Their Packaging Behavior[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2018, 33(4): 788-792.

[10]

Li K, Lee B, Kim Y. High Performance Reverse Osmosis Membrane with Carbon Nanotube Support Layer[J]. J. Membr. Sci., 2019, 592(1): 117358

[11]

Munkhbayar B, Bayaraa N, Rehman H, et al. Grinding Characteristic of Multi-Walled Carbon Nanotubes-Alumina Composite Particle[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2012, 27(6): 1009-1013.

[12]

Tolchkov Y N, Mikhaleva Z A, Sldozian R, et al. Effect of Surfactant Stabilizers on the Distribution of Carbon Nanotubes in Aqueous Media[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33(3): 533-536.

[13]

Cohen-Tanugi D, Grossman J C. Water Desalination across Nanoporous Graphene[J]. Nano Lett., 2012, 12(7): 3602-3608.

[14]

Cohen-Tanugi D, Grossman J C. Water Permeability of Nanoporous Graphene at Realistic Pressures for Reverse Osmosis Desalination[J]. J. Chem. Phys., 2014, 141(7): 074704

[15]

Konatham D, Yu J, Ho T A, et al. Simulation Insights for Graphene-Based Water Desalination Membranes[J]. Langmuir, 2013, 29(38): 11884-11897.

[16]

Hughes Z E, Shearer C J, Shapter J, et al. Simulation of Water Transport through Functionalized Single-Walled Carbon Nanotubes (Swcnts) [J]. J. Phys. Chem. C, 2012, 116(47): 24943-24953.

[17]

Corry B. Water and Ion Transport through Functionalised Carbon Nanotubes: Implications for Desalination Technology[J]. Energ. Environ. Sci., 2011, 4(3): 751

[18]

Huang K, Liu G, Lou Y, et al. A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution[J]. Angew Chem. Int. Ed. Engl., 2014, 53(27): 6929-6932.

[19]

You Y, Jin X H, Wen X Y, et al. Application of Graphene Oxide Membranes for Removal of Natural Organic Matter from Water[J]. Carbon, 2018, 129(1): 415-419.

[20]

Joshi R K, Carbone P, Wang F C, et al. Precise and Ultrafast Molecular Sieving through Graphene Oxide Membranes[J]. Science, 2014, 1(343): 752-754.

[21]

Preston G M, Carroll T P, Guggino W B, et al. Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell Chip28 Protein[J]. Science, 1992, 1(256): 385-387.

[22]

Jung J S, Preston G M, Smith B L, et al. Molecular Stracture of the Water Channel through Aquapofin Chip. The Hourglass Model[J]. J. Bio.Chem., 1994, 1(269): 14648-14654.

[23]

Bienert G P, Moller A L, Kristiansen K A, et al. Specific Aquaporins Facilitate the Diffusion of Hydrogen Peroxide across Membranes[J]. J. Bio. Chem., 2007, 282(2): 1183-1192.

[24]

Day R E, Kitchen P, Owen D S, et al. Human Aquaporins: Regulators of Transcellular Water Flow[J]. Biochim. Biophys. Acta, 2014, 1840(5): 1492-1506.

[25]

Javot H. The Role of Aquaporins in Root Water Uptake[J]. Ann. Bot-London, 2002, 90(3): 301-313.

[26]

Venero J L, Vizuete Mal Machado A, et al. Aquaporins in the Central Nervous System[J]. Prog. Neurobiol., 2001, 63(3): 321-336.

[27]

Takata K. Aquaporins: Water Channel Proteins of the Cell Membrane [J]. Prog. Histochem. Cyto., 2004, 39(1): 1-83.

[28]

Agre P, Preston G M, Smith B L, et al. Aquaporin Chip: The Archetypal Molecular Water Channel[J]. Am. J. Physiol, 1993, 1(265): 463-476.

[29]

Zhang X, Zhou W, Xu F, et al. Resistance of Water Transport in Carbon Nanotube Membranes[J]. Nanoscale, 2018, 10(27): 13242-13249.

[30]

Oyarzua E, Walther J H, Megaridis C M, et al. Carbon Nanotubes as Thermally Induced Water Pumps [J]. ACS Nano, 2017, 11(10): 9997-10002.

[31]

Li J, Gao S, Long R, et al. Self-Pumped Evaporation for Ultra-Fast Water Desalination and Power Generation[J]. Nano Energy, 2019, 65(1): 1-8.

[32]

Zhao K, Wu H. The Fountain Effect of Ice-Like Water across Nanotubes at Room Temperature[J]. Phys. Chem. Chem. Phys., 2017, 19(42): 28496-28501.

[33]

Chen B, Jiang H, Liu H, et al. Thermal-Driven Flow inside Graphene Channels for Water Desalination[J]. 2D Materials, 2019, 6(3): 035018

[34]

Oluwajobi A, Chen X. The Effect of Interatomic Potentials on the Molecular Dynamics Simulation of Nanometric Machining[J]. Int. J. Autom. Comput., 2011, 8(3): 326-332.

[35]

Hess B, Holm C, van der Vegt N. Osmotic Coefficients of Atomistic Nacl (Aq) Force Fields[J]. J. Chem. Phys., 2006, 124(16): 164509

[36]

Patra M, Karttunen M. Systematic Comparison of Force Fields for Microscopic Simulations of NaCl in Aqueous Solutions: Diffusion, Free Energy of Hydration, and Structural Properties[J]. J. Comput. Chem., 2004, 25(5): 678-689.

[37]

Chen Y, Zhu Y, Ruan Y, et al. Molecular Insights into Multilayer 18-Crown-6-Like Graphene Nanopores for K+/Na+ Separation: A Molecular Dynamics Study[J]. Carbon, 2019, 144(1): 32-42.

[38]

Essmann U, Perera L, Berkowitz M L, et al. A Smooth Particle Mesh Ewald Method[J]. J. Chem. Phys., 1995, 103(19): 8577-8593.

[39]

Humphrey W, Dalke A, Schulten K. Vmd: Visual Molecular Dynamics [J]. J. Mol. Graph., 1996, 14(1): 33-38.

[40]

Stukowski A. Visualization and Analysis of Atomistic Simulation Data with Ovito-the Open Visualization Tool[J]. Model. Simul. Mater. SC., 2010, 18(1): 015012

[41]

Yu Y, Fan J, Xia J, et al. Dehydration Impeding Ionic Conductance through Two-Dimensional Angstrom-Scale Slits[J]. Nanoscale, 2019, 11(17): 8449-8457.

[42]

Bakli C, Chakraborty S. Anomalous Interplay of Slip, Shear and Wettability in Nanoconfined Water[J]. Nanoscale, 2019, 11(23): 11254-11261.

[43]

Chen B, Jiang H, Liu X, et al. Molecular Insight into Water Desalination across Multilayer Graphene Oxide Membranes[J]. ACS Appl. Mater. Interfaces, 2017, 9(27): 22826-22836.

[44]

Chen B, Jiang H, Liu X, et al. Observation and Analysis of Water Transport through Graphene Oxide Interlamination[J]. J. Phys. Chem. C, 2017, 121(2): 1321-1328.

[45]

Maali A, Cohen-Bouhacina T, Kellay H. Measurement of the Slip Length of Water Flow on Graphite Surface[J]. Appl. Phys. Lett., 2008, 92(5): 053101

[46]

Wei N, Peng X, Xu Z. Breakdown of Fast Water Transport in Graphene Oxides[J]. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys., 2014, 89(1): 012113

[47]

Wei N, Peng X, Xu Z. Understanding Water Permeation in Graphene Oxide Membranes[J]. ACS Appl. Mater. Interfaces, 2014, 6(8): 5877-5883.

[48]

Voronov R S, Papavassiliou D V, Lee L L. Slip Length and Contact Angle over Hydrophobic Surfaces[J]. Chem. Phys. Lett., 2007, 441(4–6): 273-276.

[49]

Zhang R, Di Q, Wang X, et al. Numerical Study of the Relationship between Apparent Slip Length and Contact Angle by Lattice Boltzmann Method[J]. J. Hydrodyn., 2012, 24(4): 535-540.

[50]

Melios C, Giusca C E, Panchal V, et al. Water on Graphene: Review of Recent Progress[J]. 2D Materials, 2018, 5(2): 1-18.

[51]

Huang D M, Sendner C, Horinek D, et al. Water Slippage Versus Contact Angle: A Quasiuniversal Relationship[J]. Phys. Rev. Lett., 2008, 101(22): 226101

[52]

Agrawal K V, Shimizu S, Drahushuk L W, et al. Observation of Extreme Phase Transition Temperatures of Water Confined inside Isolated Carbon Nanotubes[J]. Nat. Nanotechnol., 2017, 12(3): 267-273.

[53]

Zhao K, Wu H. Structure-Dependent Water Transport across Nanopores of Carbon Nanotubes toward Selective Gating Upon Temperature Regulation[J]. Phys. Chem. Chem. Phys., 2015, 17(16): 10343-10347.

[54]

Wang Y, He Z, Gupta K M, et al. Molecular Dynamics Study on Water Desalination through Functionalized Nanoporous Graphene [J]. Carbon, 2017, 116(1): 120-127.

[55]

Liu Y, Xie D, Song M, et al. Water Desalination across Multilayer Graphitic Carbon Nitride Membrane: Insights from Non-Equilibrium Molecular Dynamics Simulations[J]. Carbon, 2018, 140(1): 131-138.

[56]

Li W, Wang W, Zhang Y, et al. Highly Efficient Water Desalination in Carbon Nanocones[J]. Carbon, 2018, 129(1): 374-379.

[57]

Hu M, Mi B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes[J]. Environ. Sci. Technol., 2013, 47(8): 3715-3723.

[58]

Cohen-Tanugi D, Lin L-C, Grossman J C. Multilayer Nanoporous Graphene Membranes for Water Desalination[J]. Nano Lett., 2016, 16(2): 1027-1033.

[59]

Li W, Yang Y, Weber J K, et al. Tunable, Strain-Controlled Nanoporous MoS(2) Filter for Water Desalination[J]. ACS Nano, 2016, 10(2): 1829-1835.

[60]

Asempour F, Akbari S, Kanani-Jazi M H, et al. Chlorine-Resistant Tfn Ro Membranes Containing Modified Poly(Amidoamine) Dendrimer-Functionalized Halloysite Nanotubes[J]. J. Membr. Sci., 2021, 623(1): 119039

[61]

Gu Q A, Li K, Li S, et al. In Silico Study of Structure and Water Dynamics in Cnt/Polyamide Nanocomposite Reverse Osmosis Membranes[J]. Phys. Chem. Chem. Phys., 2020, 22(39): 22324-22331.

[62]

Nakagawa K, Togo N, Takagi R, et al. Multistage Osmotically Assisted Reverse Osmosis Process for Concentrating Solutions Using Hollow Fiber Membrane Modules[J]. Chem. Eng. Res. Des., 2020, 162(123): 117-124.

[63]

Feng S, Low Z-X, Liu S, et al. Microporous Polymer Incorporated Polyamide Membrane for Reverse Osmosis Desalination[J]. J. Membr. Sci., 2020, 610(1): 118299

[64]

Jarma Y A, Karaoglu A, Tekin O, et al. Assessment of Different Nanofiltration and Reverse Osmosis Membranes for Simultaneous Removal of Arsenic and Boron from Spent Geothermal Water[J]. J. Hazard. Mater., 2021, 405(2): 124129

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/