Preparation, Characterization, and Performance of Lignin-based Microencapsulated Red Phosphorus Flame Retardant for ABS

Lei Xiong , Shaohuai Huang , Rouchao Zhong , Weizhong Tang , Chao Liu , Yanqiao Jin

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (2) : 292 -299.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (2) : 292 -299. DOI: 10.1007/s11595-022-2530-2
Organic Materials

Preparation, Characterization, and Performance of Lignin-based Microencapsulated Red Phosphorus Flame Retardant for ABS

Author information +
History +
PDF

Abstract

The inherent difficulty in preservation and processing of conventional red phosphorus flame retardant severely limits its growing applications in polymer materials, thus, there is an urgent need to exploit effective technology to modify red phosphorus. Functionalized lignin-based compounds can provide a great potential in improving the preservation and processing of red phosphorus. Here, we prepared melamine modified lignin/aluminum phosphate coated red phosphorus (LMAP@RP) and used it as the flame retardant of acrylonitrile-butadiene-styrene (ABS) resin. With 25wt% loading LMAP@RP, the ABS samples show excellent flame inhibiting capacity and reached UL-94 V-0 rating. Cone calorimetry test results show that the peak heat release rate, total heat release and total smoke release of ABS/25LMAP@RP are reduced strikingly by 64.6%, 49.3%, and 30.1%, respectively. The char residue is 15.36wt% and the char layer is continuous and dense. The outstanding flame retardant and smoke-suppressant performances of LMAP@RP show its application prospect for ABS.

Keywords

lignin / red phosphorus / ABS / flame retardant

Cite this article

Download citation ▾
Lei Xiong, Shaohuai Huang, Rouchao Zhong, Weizhong Tang, Chao Liu, Yanqiao Jin. Preparation, Characterization, and Performance of Lignin-based Microencapsulated Red Phosphorus Flame Retardant for ABS. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(2): 292-299 DOI:10.1007/s11595-022-2530-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng J, Carpanese C, Fina A. Thermal Decomposition Investigation of ABS Containing Lewis-acid Type Metal Salts[J]. Polym. Degrad. Stabil., 2016, 129: 319-327.

[2]

Realinho V, Haurie L, Formosa J, et al. Flame Retardancy Effect of Combined Ammonium Polyphosphate and Aluminium Diethyl Phosphinate in Acrylonitrile-butadiene-styrene[J]. Polym. Degrad. Stabil., 2018, 155: 208-219.

[3]

Prieur B, Meub M, Wittemann M, et al. Phosphorylation of Lignin to Flame Retard Acrylonitrile Butadiene Styrene (ABS)[J]. Polym. Degrad. Stabil., 2016, 127: 32-43.

[4]

Wei P, Wu D, Zhong H, et al. Effect of Flame Retardant Containing Phosphorus and Silicone on Thermal Performance of PC/ABS[J]. J Wuhan Univ. Technol.-Mater. Sci. Ed., 2009, 24: 235-240.

[5]

Zhang P, He Y, Tian S, et al. Flame Retardancy, Mechanical, and Thermal Properties of Waterborne Polyurethane Conjugated with a Novel Phosphorous-nitrogen Intumescent Flame Retardant[J]. Polym. Compos., 2015, 38(3): 452-462.

[6]

Braun U, Schartel B. Flame Retardant Mechanisms of Red Phosphorus and Magnesium Hydroxide in High Impact Polystyrene[J]. Macromol. Chem. Phys., 2004, 205: 2185-2196.

[7]

Liu J, Guo Y, Zhang Y, et al. Thermal Conduction and Fire Property of Glass Fiber-reinforced High Impact Polystyrene/Magnesium Hydroxide/Microencapsulated Red Phosphorus Composite[J]. Polym. Degrad. Stabil., 2016, 129: 180-191.

[8]

Wang B, Sheng H, Shi Y, et al. Recent Advances for Microencapsulation of Flame Retardant[J]. Polym. Degrad. Stabil., 2015, 113: 96-109.

[9]

Jian R, Chen L, Hu Z, et al. Flame-retardant Polycarbonate/Acrylonitrile-butadiene-styrene Based on Red Phosphorus Encapsulated by Polysiloxane: Flame Retardance, Thermal Stability, and Water Resistance[J]. J. Appl. Polym. Sci., 2012, 123: 2867-2874.

[10]

Liu Y, Wang Q. Melamine Cyanurate-microencapsulated Red Phosphorus Flame Retardant Unreinforced and Glass Fiber Reinforced Polyamide 66[J]. Polym. Degrad. Stabil., 2006, 91: 3103-3109.

[11]

Liu J, Guan H, Song D. Preparation and Characterization of Microcapsulated Red Phosphorus and Kinetic Analysis of Its Thermal Oxidation[J]. Kinet Catal+., 2017, 58: 191-197.

[12]

Chang S, Zeng C, Yuan W, et al. Preparation and Characterization of Double-layered Microencapsulated Red Phosphorus and Its Flame Retardance in Poly(lactic acid)[J]. J. Appl. Polym. Sci., 2012, 125: 3014-3022.

[13]

Liu J, Guan H. Preparation, Characterisation and Performance of Microencapsulated Red Phosphorus[J]. Propellants Explos. Pyrotech, 2017, 42: 1358-1365.

[14]

Wang H, Meng X, Wen B, et al. A Simple Route for the Preparation of Red Phosphorus Microcapsule with Fine Particle Distribution[J]. Mater. Lett, 2008, 62: 3745-3747.

[15]

Chen C, Li F, Zhang Y, et al. Compressive, Ultralight and Fire-resistant Lignin-modified Graphene Aerogels as Recyclable Absorbents for Oil and Organic Solvents[J]. Chem. Eng. J., 2018, 350: 173-180.

[16]

Keshk S, Al Zahhar A, Al-Sehemi AG, et al. Synthesis and Characterization of Magnetic Nanoparticles/Dialdehyde Cellulose Composite as a Flame Retardant[J]. Mater. Res. Express, 2018, 6: 1-11.

[17]

Zheng Z, Liu Y, Dai B, et al. Fabrication of Cellulose-based Halogen-free Flame Retardant and Its Synergistic Effect with Expandable Graphite in Polypropylene[J]. Carbohydr. Polym., 2019, 213: 257-265.

[18]

Song P, Cao Z, Meng Q, et al. Effect of Lignin Incorporation and Reactive Compatibilization on the Morphological, Rheological, and Mechanical Properties of ABS resin[J]. J. Macromol. Sci. Part B-Phys., 2012, 51: 720-735.

[19]

Yu O, Kim KH. Lignin to Materials: A Focused Review on Recent Novel Lignin Applications[J]. Appl Sci., 2020, 10: 4626-4641.

[20]

Laoutid F, Duriez V, Brison L, et al. Synergistic Flame-retardant Effect between Lignin and Magnesium Hydroxide in Poly(ethylene-co-vinyl acetate)[J]. Flame Retardancy and Thermal Stability of Materials, 2019, 2: 9-18.

[21]

Chirico A, Armanini M, Chini P, et al. Flame Retardants for Polypropylene Based on Lignin[J]. Polym. Degrad. Stabil., 2003, 79: 139-145.

[22]

Chen S, Lin S, Hu Y, et al. A Lignin-based Flame Retardant for Improving Fire Behavior and Biodegradation Performance of Polybutylene Succinate[J]. Polym. Adv. Technol., 2018, 29: 3142-3150.

[23]

Liu L, Qian M, Song P, et al. Fabrication of Green Lignin-based Flame Retardants for Enhancing the Thermal and Fire Retardancy Properties of Polypropylene/Wood Composites[J]. ACS Sustainable Chem. Eng., 2016, 4: 2422-2431.

[24]

Sathawong S, Sridach W, Techato K. Lignin: Isolation and Preparing the Lignin Based Hydrogel [J]. J. Environ. Chem. Eng., 2018, 6: 5879-5888.

[25]

Wang S, Wang K, Liu Q, et al. Comparison of The Pyrolysis Behavior of Lignins from Different Tree Species[J]. Biotechnol. Adv., 2009, 27: 562-567.

[26]

Zaug JM, Soper AK, Clark SM. Pressure-dependent Structures of Amorphous Red Phosphorus and the Origin of the First Sharp Diffraction Peaks[J]. Nat. Mater., 2008, 7: 890-899.

[27]

Yang C, Zhu G, Wang Y, et al. Synthesis of Aluminum Phosphate with Dehydroabietylamine as Structure Directing Agent[J]. Chemistry and Industry of Forest Products, 2020, 40: 69-75.

[28]

Jian RK, Chen L, Chen SY, et al. A Novel Flame-retardant Acrylonitrile-butadiene-styrene System Based on Aluminum Isobutylphosphinate and Red Phosphorus: Flame Retardance, Thermal Degradation and Pyrolysis Behavior[J]. Polym. Degrad. Stabil., 2014, 109: 184-193.

[29]

Bhoyate S, Ionescu M, Kahol PK, et al. Sustainable Flame-retardant Polyurethanes Using Renewable Resources[J]. Ind. Crop. Prod., 2018, 123: 480-488.

[30]

Costes L, Laoutid F, Aguedo M, et al. Phosphorus and Nitrogen Derivatization as Efficient Route for Improvement of Lignin Flame Retardant Action in PLA[J]. Eur. Polym. J., 2016, 84: 652-667.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/