The Electronic and Optical Properties of Vertically Stacked GaN-WS2 Heterostructure

Dahua Ren , Kai Qian , Qiang Li , Yuan Zhang , Teng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (1) : 28 -31.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 37 ›› Issue (1) : 28 -31. DOI: 10.1007/s11595-022-2495-1
Advanced Material

The Electronic and Optical Properties of Vertically Stacked GaN-WS2 Heterostructure

Author information +
History +
PDF

Abstract

The electronic structure and optical property of stacked GaN-WS2 heterostructure are explored with HSE06 calculation based on density functional theory. The direct band gap of GaN-WS2 heterostructure is 1.993 eV, which is obviously a type-II band alignment semiconductor. Furthermore, the optical property of GaN-WS2 heterostructure such as absorption coefficient is analyzed. These new findings enable GaN-WS2 heterostructure to be promising candidates for photovoltaic cells and electronic devices in visible light.

Keywords

GaN-WS2 heterostructure / band structure / optical property / calculation

Cite this article

Download citation ▾
Dahua Ren, Kai Qian, Qiang Li, Yuan Zhang, Teng Zhang. The Electronic and Optical Properties of Vertically Stacked GaN-WS2 Heterostructure. Journal of Wuhan University of Technology Materials Science Edition, 2022, 37(1): 28-31 DOI:10.1007/s11595-022-2495-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geim A, Grigorieva I. Van Der Waals Heterostructures. Nature, 2013, 499: 419-425.

[2]

Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and Optoelectronics of Two-dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699-712.

[3]

Zhu H, Wang P F, Feng Y Q, et al. Bipolar Resistive Switching Effect in BiFeO3-Nb:SrTiO3 Heterostructure by RF Sputtering at Room Temperature. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2018, 33(6): 1 360-1 364.

[4]

Zhang Y D, Zhang B Y, Wang M H, et al. Growth and Characteristics of n-VO2/p-GaN Based Heterojunctions. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2020, 35(2): 342-347.

[5]

Liu J, Ma Y Q, Dai Y W, et al. Electronic Properties of Size-dependent MoTe2-WTe2 Heterostructure. Chin. Phys. B, 2019, 28: 107 101.

[6]

Hill H M, Rigosi A F, Rim K T, et al. Band Alignment in MoS2-WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Lett., 2016, 16(8): 4 831-4 837.

[7]

Rigosi A F, Hill H M, Li Y, et al. Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2-WS2 and MoSe2-WSe2. Nano Lett., 2015, 15(8): 5 033-5 038.

[8]

Tan X Y, Liu L L, Ren D H. Tunable Electronic Structures of Germanane-Antimonene Van der Waals Heterostructures Using an External Electric Field and Normal Strain. Chin. Phys. B, 2020, 29: 076 102.

[9]

Massicotte M, Schmidt P, Vialla F, et al. Picosecond Photoresponse in Van der Waals Heterostructures. Nat. Nanotechnol., 2015, 11(1): 42-46.

[10]

Lee C H, Lee G H, van der Zande A M, et al. Atomically Thin p-n Junctions with Van der Waals Heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676-681.

[11]

Britnell L, Gorbachev R V, Jalil R, et al. Field Effect Transistors Based on Vertical Graphene Heterostructures. Science, 2012, 335(6071): 947-950.

[12]

Wang H T, Yuan H T, Sae Hong S, et al. Physical and Chemical Tuning of Two-dimensional Transition Metal Dichalcogenides. Chem. Soc. Rev., 2015, 44(9): 2 664-2 680.

[13]

Lu N, Guo H Y, Li L, et al. MoS2-MX2 Heterobilayers: Bandgap Engineering via Tensile Strain or External Electrical Field. Nanoscale, 2014, 6(5): 2 879-2 886.

[14]

Dingle R, Sell D D, Stokowski S E, et al. Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers. Phys. Rev. B, 1971, 4: 1 211-1 218.

[15]

Lucking M C, Sie W Y, Choe D H, et al. Traditional Semiconductors in the Two-dimensional Limit. Phys. Rev. Lett., 2018, 120: 086 101.

[16]

Ren D H, Tan X Y, Zhang T, et al. Electronic and Optical Properties of GaN-MoS2 Heterostructure from First-principles Calculations. Chin. Phys. B, 2019, 28: 086 104.

[17]

Sanders N, Bayerl D, Shi G, et al. Electronic and Optical Properties of Two-dimensional GaN from First-principle. Nano Lett., 2017, 17(12): 7 345-7 349.

[18]

Sun M, Chou J P, Ren Q Q, et al. Tunable Schottky Barrier in Van der Waals Heterostructures of Graphene and g-GaN. Appl. Phys. Lett., 2017, 110: 173 105.

[19]

Al Balushi Z Y, Wang K, Ghosh R K, et al. Two-dimensional Gallium Nitride Realized via Graphene Encapsulation. Nat. Mater., 2016, 15: 1 166-1 171.

[20]

He Y M, Yang Y, Zhang Z H, et al. Strain-induced Electronic Structure Changes in Stacked Van der Waals Heterostructures. Nano Lett., 2016, 16(5): 3 314-3 320.

[21]

Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B, 1993, 47: 558.

[22]

Kresse G, Furthmuller J. Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane Wave Basis Set. Phys. Rev. B, 1996, 54: 11 169.

[23]

Kresse G, Furthmuller J. Efficiency of Ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set. Comput. Mater. Sci., 1996, 6: 15-50.

[24]

Kohn W, Sham L. Self-consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 1965, 140: A1 133.

[25]

Bernardi M, Palummo M, Grossman J C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-dimensional Monolayer Materials. Nano Lett., 2013, 13: 3 664.

[26]

Perdew J P, Burke J P, Ernzerhof M. Generalized Gradient Approximation Made Easy. Phys. Rev. Lett., 1996, 77: 3 865.

[27]

Deák P, Aradi B, Frauenheim T, et al. Accurate Defect Levels Obtained from the HSE06 Range-separated Hybrid Functional. Phys. Rev. B, 2010, 81: 153 203.

[28]

Blochl P E. Projector Augmented-wave Method. Phys. Rev. B, 1994, 50: 17 953.

[29]

Tsoi S, Dev P, Friedman A L, et al. Van der Waals Screening by Single Layer Graphene and Molybdenum Disulfide. ACS Nano, 2014, 8: 12 410-12 417.

[30]

Lee L, Murray E D, Kong L, et al. Higher-accuracy Van der Waals Density Functional. Phys. Rev. B, 2010, 82: 081 101.

[31]

Gajdoš M, Hummer K, Kresse G, et al. Linear Optical Properties in the Projector-augmented Wave Methodology. Phys. Rev. B, 2006, 73: 045 112.

[32]

Adler S L. Quantum Theory of the Dielectric Constant in Real Solids. Phys. Rev., 1962, 126: 413-420.

[33]

Komsa H, Krasheninnikov A V. Electronic Structures and Optical Properties of Realistic Transition Metal Dichalcogenide Heterostructures from First Principles. Phys. Rev. B, 2013, 88: 085 318.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/