A Composite Catalytic Oxidation-fluorescence Sensing System for 2,4-dichlorophenol Analysis based on Fe(III)PcTs-BuOOH-CdTe QDs

Yilin Tong , Yu Zhang , Kan Yu , Jiaqi Bao , Juanjuan Yin , Zhihong Zeng

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (6) : 896 -902.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (6) : 896 -902. DOI: 10.1007/s11595-021-2485-8
Advanced Materials

A Composite Catalytic Oxidation-fluorescence Sensing System for 2,4-dichlorophenol Analysis based on Fe(III)PcTs-BuOOH-CdTe QDs

Author information +
History +
PDF

Abstract

The active oxygen species in the catalytic oxidation system of Fe(III)PcTs-t-BuOOH were identified, and the mechanism of the catalytic oxidation of phenolic substrates was proposed. Quinone imine molecules, the main products of catalytic oxidation reaction, can be adsorbed on the surface of CdTe QDs, resulting in their fluorescence quenching. A dual function of catalytic oxidation and fluorescence sensing was developed for the determination of dichlorophenol (DCP) based on the Fe(III)PcTs-BuOOH-CdTe QDs system. The linear detection range of DCP was 1×10−6–1.3×10−4 mol/L, and the detection limit 2.4×10−7 mol/L. This method was characterized by high selectivity, good repeatability and desirable stability, presenting promising potentials for analyzing DCP concentration in real water samples.

Keywords

dichlorophenol (DCP) / Fe(III)PcTs-BuOOH-CdTe QDs system / quinone imine / catalytic oxidation / fluorescence sensing

Cite this article

Download citation ▾
Yilin Tong, Yu Zhang, Kan Yu, Jiaqi Bao, Juanjuan Yin, Zhihong Zeng. A Composite Catalytic Oxidation-fluorescence Sensing System for 2,4-dichlorophenol Analysis based on Fe(III)PcTs-BuOOH-CdTe QDs. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(6): 896-902 DOI:10.1007/s11595-021-2485-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gianfreda L, Lamarino G, Scelza R, et al. Oxidative Catalysts for the Transformation of Phenolic Pollutants: A Brief Review[J]. Biocatalysis and Biotransformation, 2006, 24(3): 177-187.

[2]

Agboola B, Ozoemena KI, Nyokong T. Hydrogen Peroxide Oxidation of 2-Chlorophenol and 2,4,5-trichlorophenol Catalyzed by Monomeric and Aggregated Cobalt Tetrasulfophthalocyanine[J]. J. Mol. Catal. A: Chem., 2005, 227(1–2): 209-216.

[3]

Iliev V, Mihaylova A, Bilyarska L. Photooxidation of Phenols in Aqueous Solution, Catalyzed by Mononuclear and Polynuclear Metal Phthalocyanine Complexis[J]. J. Mol. Catal. A: Chem., 2002, 184: 121-130.

[4]

Li DP, Tong YL, Huang J, et al. First Observation of Tetranitro Iron(II) Phthalocyanine Catalyzed Oxidation of Phenolic Pollutant Assisted with 4-Aminoantipyrine Using Dioxygen as Oxidant[J]. J. Mol. Catal. A: Chem., 2011, 345: 108-116.

[5]

Koneswaran M, Narayanaswamy R. l-Cysteine-capped ZnS Quantum Dots based Fluorescence Sensor for Cu2+ Ion[J]. Sens. Actuators B: Chem., 2009, 139: 104-109.

[6]

Koneswaran M, Narayanaswamy R. Mercaptoacetic Acid Capped CdS Quantum Dots as Fluorescence Single Shot Probe for Mercury(II)[J]. Sens Actuators B: Chem., 2009, 139: 91-96.

[7]

Xia YS, Zhu CQ. Use of Surface-modified CdTe Quantum Dots as fluorescent Probes in Sensing Mercury (II)[J]. Talanta, 2008, 75: 215-221.

[8]

Qayyum H, Ulfat J. Detoxification of Phenols and Aromatic Amines from Polluted Waste Water by Using Phenol Oxidases[J]. Journal of Scientific & Industrial Research, 2000, 59(4): 286-293.

[9]

Mckinley R, Plant JA, Bell JNB, et al. Endocrine Disrupting Pesticides: Implications for Risk Assessment[J]. Environment International, 2008, 34(4): 168-172.

[10]

Mehmood Z, Kelly DE, Kelley SL. Cytochrome P450 3A4 Mediated Metabolism of 2,4-Dichlorophenol[J]. Chemosphere, 1997, 31(18): 2 281-2 291.

[11]

Huang CP, Li YK, Chen TM. A Highly Sensitive System for Urea Detection by Using CdSe/ZnS Core-shell Quantum Dots[J]. Biosensors and Bioelectronics, 2007, 22(8): 1 835-1 838.

[12]

Peng X, Schlamp MC, Alivisatos AP, et al. Epitaxial Growth of Highly Luminescent AdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility[J]. J. Am. Chem. Soc., 1997, 119(30): 7 019-7 029.

[13]

Dabbousi BO, Viejo JR, Mattoussi H, et al. (CdSe)/ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites[J]. J. Phys. Chem. B, 1997, 101(46): 9 463-9 475.

[14]

Yuan JP, Guo WW, Wang EK. Utilizing a CdTe Quantum Dots-Enzyme Hybrid System for the Determination of Both Phenolic Compounds and Hydrogen Peroxide[J]. Analytical Chemistry, 2008, 80(4): 1 141-1 145.

[15]

Tong YL, Li DP, Huang J. A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine[J]. Bull. Korean Chem. Soc., 2013, 34(11): 3 307-3 311.

[16]

Michalet X, Pinaud FF, Bentolila LA, et al. Quantum Dots for Live Cells, in vivo Imaging, and Diagnostics[J]. Science, 2005, 307(28): 538-544.

[17]

Bruchez M, Moronne M, Alivisatos AP, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science, 1998, 281: 2 013-2 016.

[18]

Chan WCW, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nanisotopic Detection[J]. Science, 1998, 281: 2 016-2 018.

[19]

Ali H, Langlois R, Wagner JR, et al. Biological Activities of Phthalocyanines-X Syntheses and Analyses of Sulfonated Phthalocyanines[J]. Photochem. Photobiol., 1988, 47: 713-715.

[20]

Tong YL, Li DP, Huang J, et al. A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine[J]. Bull. Korean Chem. Soc., 2013, 34(11): 3 307-3 311.

[21]

Meunier B, Sorokin A. Oxidation of Pollutants Catalyzed by Metallophthalocyanines[J]. Accounts of Chemical Research, 1997, 30(11): 470-476.

[22]

Sorokin A, Séris JL, Meunier B. Effcient Oxidative Dechlorination and Aromatic Ring Cleavage of Chlorinated Phenols Catalyzed by Iron Sulfophthalocyanine[J]. Science, 1995, 268(5214): 1 163-1 166.

[23]

Tripathi VS, Lakshminarayana G, Nogami M. Optical Oxygen Sensors based on Platinum Porphyrin Dyes Encapsulated in ORMOSILS[J]. Sens Actuators B: Chem., 2010, 147: 741-747.

[24]

Zalomaeva OV, Ivanchikova ID, Kholdeeva OA, et al. Kinetics and Mechanism of the Oxidation of Alkyl Substituted Phenols and Naphthols with tBuOOH in the Presence of Supported Iron Phthalocyanine[J]. New Journal of Chemistry, 2009, 33(5): 1 031-1 037.

[25]

Sorokin AB, Mangematin S, Pergrale C. Selective Oxidation of Aromatic Compounds with Dioxygen and Peroxides Catalyzed by Phthalocyanine Supported Catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2002, 182–183(31): 267-281.

[26]

Bao HF, Wang EK, Dong SJ. One-pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites[J]. Small, 2006, 2(4): 476-480.

[27]

Tong YL, Zeng ZH, Yu K, et al. A Fiber Optic Sensor for 2,4-dichlorophenol Analysis based on Optical Composite Oxygen-sensitive Film[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2020, 8(24): 743-749.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/