Preparation of Silica Radiation Pore and Its Application as Antimicrobial Carrier

Jiangxi Huang , Xinlin Zha , Hui Fan , Zhentan Lu , Yuanli Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (6) : 891 -895.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (6) : 891 -895. DOI: 10.1007/s11595-021-2484-9
Advanced Materials

Preparation of Silica Radiation Pore and Its Application as Antimicrobial Carrier

Author information +
History +
PDF

Abstract

Hollow silica nanospheres with radical pore on the surfaces were prepared using the assemblies of valine amphiphilic small molecule and benzene as double-templates through sol-gel method in tetramethylammonium hydroxide (25wt%) solution at the stirring rate of 1 000 rpm. There are a lot of vertical pores on the surfaces of the hollow spheres after removing the templates in Muffle furnace at 550 °C for 5 h. The sample was characterized using field-emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET), X-ray diffraction, etc. The diameter, the vertical pore size of the nanospheres and the BET surface areas are 30–100 nm, 4.2 nm, and 570.5 m2/g, respectively. Because the high porosity and specific surface area, this kind of hollow sphere is the excellent antimicrobial carrier. The antibacterial activities of the silica nanospheres were evaluated by using a bacterial growth inhibitory assay. The experimental results show that the silica hollow spheres loaded with Ag+ have a good bactericidal effect.

Keywords

sol-gel chemistry / nanostructures / radical pores / silica nanospheres / antimicrobial carrier

Cite this article

Download citation ▾
Jiangxi Huang, Xinlin Zha, Hui Fan, Zhentan Lu, Yuanli Chen. Preparation of Silica Radiation Pore and Its Application as Antimicrobial Carrier. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(6): 891-895 DOI:10.1007/s11595-021-2484-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sunwoo Y, Karunakaran G, Cho EB. Hollow Mesoporous Silica Nanospheres Using Pentablock Copolymer Micelle Templates[J]. Ceramics International, 2021, 47(10): 13 351-13 362.

[2]

Yuan C, Jiang J, Wang D, Hu Y, Liu M. In Situ Growth of Chiral Gold Nanoparticles in Confined Silica Nanotube[J]. J. Nanosci. Nanotechnol., 2019, 19(5): 2 789-2 793.

[3]

Wang W, Wang P, Tang X, Elzatahry A, Wang S, Al-Dahyan D, Zhao M, Yao C, Huang C, Zhu X, Zhao T, Li X, Zhang F, Zhao D. Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization[J]. ACS. Cent. Sci., 2017, 3(8): 839-846.

[4]

Teng Z, Li W, Tang Y, Elzatahry A, Lu G, Zhao D. Organosilica: Mesoporous Organosilica Hollow Nanoparticles: Synthesis and Applications[J]. Adv. Mater., 2019, 31(38): 1 707 612

[5]

Shen D, Yang J, Li X, Zhou L, Zhang R, Li W, Chen L, Wang R, Zhang F, Zhao D. Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres[J]. Nano Lett., 2014, 14(2): 923-932. Nano. Lett.

[6]

Ngo TTT, Besson E, Bloch E, Bourrelly S, Llewellyn R, Gastaldia S, Llewellyn PL, Gigmesa D, Phana TNT. One-pot Synthesis of Organic Polymer Functionalized Mesoporous Silicas[J]. Microporous and Mesoporous Materials, 2021, 319: 111 036.

[7]

Naumova KA, Dementevaa OV, Senchikhina IN, Rudoya VM. Mesoporous silica Particles Based on Complex Micelles of Poorly Water-soluble Compounds. One Simple Step to Multidrug Carriers[J]. Microporous and Mesoporous Materials, 2021, 36: 110911.

[8]

Croissant J, Fatieiev Y, Almalik A, Khashab N. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment[J]. Adv. Healthc. Mater., 2018, 7(7): 1701248

[9]

Dang M, Li W, Zheng Y, Su X, Ma X, Zhang Y, Ni Q, Tao J, Zhang J, Lu G, Teng Z, Wang L. Mesoporous Organosilica Nanoparticles with Large Radial Pores Via an Assembly-reconstruction Process in Biphase[J]. J. Mater. Chem. B, 2017, 5(14): 2 625-2 634.

[10]

Sun Y, Chen M, Wu L. Controllable Synthesis of Hollow Periodic Mesoporous Organosilica Spheres with Radial Mesochannels and Their Degradable Behaviour[J]. J. Mater. Chem. A, 2018, 6(26): 12 323-12 333.

[11]

Jiang S, Tang G, Bai Z, Pan Y. Ultrasonic-assisted Synthesis of Hollow Mesoporous Silica as a Toxic Gases Suppressant[J]. Materials Letters, 2019, 247: 139-142.

[12]

Watanabe K, Welling TJ, Sadighiki S, Ishii H, Imhof A, Nagaoa D. Compartmentalization of Gold Nanoparticle Clusters in Hollow Silica Spheres and Their Assembly Induced by an External Electric Field[J]. Journal of Colloid and Interface Science, 2020, 566: 202-210.

[13]

Anga MBMY, Huanga S, Tsaib S, Guzmanc MRD, Leea K, Lai JY. Embedding Hollow Silica Nanoparticles of Varying Shapes and Dimensions in Nanofiltration Membranes for Optimal Performance[J]. Journal of Membrane Science, 2020, 611: 118 333.

[14]

Zhu M, Yuan JJ, Zou GB. Sulfonic Acid Modified Hollow Silica Spheres and its Application in Proton Exchange Membranes[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(5): 837-842.

[15]

Han JJ, Liu XX, Zhao XJ, Jing CB. Fabrication Silver Film inside Silica Capillary[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2005, 20(1): 64-67.

[16]

Hu XL, Xiao LQ, Jian XX, Zhou WL. Synthesis of Mesoporous Silica-Embedded TiO2 Loaded with Ag Nanoparticles for Photocatalytic Hydrogen Evolution from Water Splitting[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(1): 67-75.

[17]

Sun Z, Yang J, Wang J, Li W, Kaliaguine S, Hou X, Deng Y, Zhao DY. A Versatile Designed Synthesis of Magnetically Separable Nano-catalysts with Well-defined Core-shell Nanostructures[J]. J. Mater. Chem. A, 2014, 2(17): 6 071-6 074.

[18]

Cui C, Han L, Che S. Silica Cubosomes Templated by a Star Polymer[J]. RSC Adv., 2019, 9(11): 6 118-6 124.

[19]

Xu C, Yu M, Noonan O, Zhang J, Song H, Zhang H, Lei C, Niu Y, Huang X, Yang Y, Yu C. Core-Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra-large Cavity for Protein Delivery[J]. Small, 2015, 11(44): 5 949-5 955.

[20]

Knezevic NZ, Durand JO. Large Pore Mesoporous Silica Nanomaterials for Application in Delivery of Biomolecules[J]. Nanoscale, 2015, 7(6): 2 199-2 209.

[21]

Wang W, Wang P, Chen L, Zhao M, Hung C, Yu C, Al-Khalaf AA, Hozzein WN, Zhang F, Li X, Zhao DY. Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimaging-Guided Drug Delivery[J]. Chem, 2020, 6(5): 1 097-1 112.

[22]

Plowman B, Jones L, Bhargavsa S. Building with Bubbles: The Formation of High Surface Area Honeycomb-like Films Via Hydrogen Bubble Templated Electrodeposition[J]. Chem. Commun., 2015, 51(21): 4 331-4 346.

[23]

Li J, Liu K, Chen H, Li R, Drechsler M, Bai F, Huang J, Tang B, Yan Y. Functional Built-In Template Directed Siliceous Fluorescent Supramolecular Vesicles as Diagnostics[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21 706-21 714.

[24]

Li Y, Li B, Yan Z, Xiao Z, Huang Z, Hu K, Wang S, Yang Y. Preparation of Chiral Mesoporous Silica Nanotubes and Nanoribbons Using a Dual-Templating Approach[J]. Chem. Mater., 2013, 25(3): 307-312.

[25]

Yan Z, Li Y, Wang S, Xu Z, Chen Y, Li B, Zhu X, Zhu G, Yang Y. Artificial Frustule Prepared Through a Single-templating Approach[J]. Chem. Commun., 2010, 46(44): 8 410-8 412.

[26]

Chen Y, Li Y, Zhuang W, Li J, Wang S, Li B, Yang Y. Formation of Silica Nanotubes with Spring-like Pore Channels in the Walls[J]. Mater. Chem. Phys., 2011, 127(3): 426-432.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/