Coupling Mechanism between Tamm Plasmon Polaritons and Monolayer WS2 Embedded in Metal/Dielectric Bragg Reflector Hybrid Architecture

Guangyi Jia , Ke Yue , Wenxin Yang , Zhenxian Huang , Qiqi Liang , Yin Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (6) : 865 -870.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (6) : 865 -870. DOI: 10.1007/s11595-021-2480-0
Advanced Materials

Coupling Mechanism between Tamm Plasmon Polaritons and Monolayer WS2 Embedded in Metal/Dielectric Bragg Reflector Hybrid Architecture

Author information +
History +
PDF

Abstract

To reveal and utilize the interaction between Tamm plasmon polaritons (TPPs) and two-dimensional materials are promising for exploiting next-generation optoelectronic devices. Herein, the coupling mechanism between metal TPPs and monolayer WS2 along with its differences from that between metal TPPs and graphene was studied in detail by using the transfer matrix method. The experimental results show that it is difficult to excite TPPs at the boundary between monolayer WS2 and dielectric Bragg reflector (DBR) such that the strong coupling mainly stems from the interaction between metal TPPs and exciton in monolayer WS2. However, the coupling in graphene/DBR/metal hybrid structure derives from the interaction between two different TPP resonance modes. Thus, evolutions of Rabi splitting with various structural parameters including spacer thickness, incident angle and DBR period greatly differ from those observed in graphene/DBR/metal hybrid structure. In addition, the discrepancies induced via metal Ag and Au films as well as the possible influence mechanism were also discussed.

Keywords

Tamm plasmon polaritons / monolayer WS2 / Rabi splitting / coupling mechanism

Cite this article

Download citation ▾
Guangyi Jia, Ke Yue, Wenxin Yang, Zhenxian Huang, Qiqi Liang, Yin Li. Coupling Mechanism between Tamm Plasmon Polaritons and Monolayer WS2 Embedded in Metal/Dielectric Bragg Reflector Hybrid Architecture. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(6): 865-870 DOI:10.1007/s11595-021-2480-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kavokin AV, Shelykh IA, Malpuech G. Lossless Interface Modes at the Boundary between Two Periodic Dielectric Structures[J]. Phys. Rev. B, 2005, 72(23): 233 102

[2]

Kaliteevski M, Iorsh I, Brand S, et al. Tamm Plasmon-Polaritons Possible Electromagnetic States at the Interface of a Metal and a Dielectric Bragg Mirror[J]. Phys. Rev. B, 2007, 76(16): 165 415

[3]

Lu H, Li Y W, Jiao H, et al. Induced Reflection in Tamm Plasmon Systems[J]. Opt. Express, 2019, 27(4): 5 383-5 392.

[4]

Bikbaev RG, Vetrov SY, Timofeev IV. Epsilon-Near-Zero Absorber by Tamm Plasmon Polariton[J]. Photonics, 2019, 6(1): 28

[5]

Morozov KM, Belonovskii AV, Ivanov KA, et al. Interaction of a Tamm Plasmon and Exciton in an Organic Material in the Strong Coupling Mode[J]. Semiconductors, 2019, 53(10): 1 314-1 317.

[6]

Ferrier L, Nguyen H S, Jamois C, et al. Tamm Plasmon Photonic Crystals: From Bandgap Engineering to Defect Cavity[J]. APL Photonics, 2019, 4(10): 106 101

[7]

Maji PS, Shukla MK, Das R. Blood Component Detection based on Miniaturized Self-Referenced Hybrid Tamm-Plasmon-Polariton Sensor[J]. Sens. Actuators, B, 2018, 255: 429-734.

[8]

Kumar S, Shukla MK, Maji PS, et al. Self-Referenced Refractive Index Sensing with Hybrid-Tamm-Plasmon-Polariton Modes in Sub-Wavelength Analyte Layers[J]. J. Phys. D: Appl. Phys., 2017, 50(37): 375 106

[9]

Zhang XL, Song JF, Li XB, et al. Optical Tamm States Enhanced Broad-Band Absorption of Organic Solar Cells[J]. Appl. Phys. Lett., 2012, 101(27): 243 901

[10]

Luo X, Zhai X, Wang LL, et al. Tunable Terahertz Narrow-Band Plasmonic Filter Based on Optical Tamm Plasmon in Dual-Section InSb Slot Waveguide[J]. Plasmonics, 2017, 12(2): 509-514.

[11]

Afifinogenov BI, Bessonov VO, Soboleva IV, et al. Ultrafast All-Optical Light Control with Tamm Plasmons in Photonic Nanostructures[J]. ACS Photonics, 2019, 6(4): 844-850.

[12]

Jia G, Li G, Zhou Y, et al. Landau Quantisation of Photonic Spin Hall Effect in Monolayer Black Phosphorus[J]. Nanaphotonics, 2020, 9(1): 225-233.

[13]

Jia GY, Zhang Q, Huang ZX, et al. Ultrathin Gold Film Modified Optical Properties of Excitons in Monolayer MoS2[J]. Phys. Chem. Chem. Phys., 2017, 19(40): 27 259-27 265.

[14]

Jia GY, Huang ZX, Zhang YL, et al. Ultrasensitive Plasmonic Biosensors based on Halloysite Nanotubes/MoS2/Black Phosphorus Hybrid Architectures[J]. J. Mater. Chem. C, 2019, 7(13): 3 843-3 851.

[15]

Zhan B, Zhang Y, Wang C, et al. High Temperature Decomposition Behavior of CaZrO3 Coating on Graphite for TiNi Alloy Melting[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2020, 35(5): 980-985.

[16]

Song X, He Y, Pan X, et al. Adsorptive Behavior of Methyl Blue on Graphene Aerogel: A Mechanism Study[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2021, 36(2): 239-242.

[17]

Lundt N, Klembt S, Cherotchenko E, et al. Room-Temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 Monolayer[J]. Nat. Commun., 2016, 7: 13 328.

[18]

Hu T, Wang YF, Wu L, et al. Strong Coupling between Tamm Plasmon Polariton and Two Dimensional Semiconductor Excitons[J]. Appl. Phys. Lett., 2017, 110(5): 051 101

[19]

Zhang WL, Li XJ, Wang SS, et al. Polaritonic Manipulation based on the Spin-selective Optical Stark Eect in the WS2 and Tamm Plasmon Hybrid Structure[J]. Nanoscale, 2019, 11(10): 4 571-4 577.

[20]

Hu JG, Yao EX, Xie WQ, et al. Strong Longitudinal Coupling of Tamm Plasmon Polaritons in Graphene/DBR/Ag Hybrid Structure[J]. Opt. Express, 2019, 27(13): 18 642-18 652.

[21]

Buzavaite-Verteliene E, Valavicius A, Grineviciute L, et al. Influence of the Graphene Layer on the Strong Coupling in the Hybrid Tamm-Plasmon Polariton Mode[J]. Opt. Express, 2020, 28(7): 10 308-10 319.

[22]

Wang SS, Li XJ, Zhang WL, et al. Transverse Anderson Localization of Exciton-Polaritons in Microcavities with Single-Layer WS2[J]. IEEE J. Sel. Top. Quantum Electron., 2019, 25(6): 2 900 205

[23]

Johnson PB, Christy RW. Optical Constants of the Noble Metals[J]. Phys. Rev. B, 1972, 6(12): 4 370

[24]

Li Y, Chernikov A, Zhang X, et al. Measurement of the Optical Dielectric Function of Monolayer Transition-Metal Dichalcogenides: MoS2, MoSe2, WS2, and WSe2[J]. Phys. Rev. B, 2014, 90(20): 205 422

[25]

Jia GY, Zhou Y, Niu YZ, et al. Screening Effect of Ultrathin Gold Films on Excitons in Monolayer WS2[J]. Plasmonics, 2019, 14(15): 1 063-1 069.

[26]

Junesch J, Sannomiya T, Dahlin AB. Optical Properties of Nanohole Arrays in Metal-Dielectric Double Films Prepared by Mask-on-Metal Colloidal Lithography[J]. ACS Nano, 2012, 6(11): 10405-10415.

[27]

Wang H, Tang T, Huang Z, et al. Photonic Spin Hall Effect Modified by Ultrathin Au Films and Monolayer Transition Metal Dichalcogenides in One-Dimensional Photonic Crystal[J]. Plasmonics, 2020, 15(6): 2 127-2 135.

[28]

Kreibig U, Vollmer M. Optical Properties of Metal Clusters[M], 1995 Berlin: Springer.

[29]

Gall D. Electron Mean Free Path in Elemental Metals[J]. J. Appl. Phys., 2016, 119(8): 085 110

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/