Poly(dopamine)-assisted Bioactive Coating on the Surface of Porous Poly (Ether Ether Ketone) to Promote Osteogenic Differentiation of rBMSC

Jin Wang , Youfa Wang , Qingzhi Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 766 -776.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 766 -776. DOI: 10.1007/s11595-021-2470-2
Biomaterial

Poly(dopamine)-assisted Bioactive Coating on the Surface of Porous Poly (Ether Ether Ketone) to Promote Osteogenic Differentiation of rBMSC

Author information +
History +
PDF

Abstract

A facile modification strategy is developed to promote the proliferation and osteogenic differentiation of rat bone marrow stromal cells (rBMSCs) through deposition of a bioactive calcium silicate (CS) coating on the porous surface of poly (ether-ether-ketone) (PEEK) with the assistance of poly(dopamine) (PDA). The porous structures are etched on the surface of PEEK after sulfonation treatment. A poly(dopamine) layer is coated on the porous surface of the sulfonated PEEK (SPEEK), which provides anchoring groups for the subsequent deposition of the CS layer. Results show that the CS coating on the porous surface of SPEEK significantly improve the hydrophilicity and biomineralization formation of hydroxyapatite. Compared with PEEK, SPEEK-PDA-CS displays higher bioactivity to promote the proliferation and osteogenic differentiation of rBMSCs, including the increase of ALP activity and formation of calcium nodules, the expression of osteogenic differentiation-related genes. These results are beneficial to extending clinical applications of PEEK-based implants for bone tissue repair and orthopedic surgery.

Keywords

poly (ether-ether-ketone) / calcium silicate / poly(dopamine) / bioactivity / osteogenic differentiation

Cite this article

Download citation ▾
Jin Wang, Youfa Wang, Qingzhi Wu. Poly(dopamine)-assisted Bioactive Coating on the Surface of Porous Poly (Ether Ether Ketone) to Promote Osteogenic Differentiation of rBMSC. Journal of Wuhan University of Technology Materials Science Edition, 2022, 36(5): 766-776 DOI:10.1007/s11595-021-2470-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Petite H, Viateau V, Bensaid W, et al. Tissue-Engineered Bone Regeneration [J]. Nat. Biotechnol, 2000, 18(9): 959-963.

[2]

Gulati K, Johnson L, Karnagaran R, et al. In Situ Transformation of Chitosan Films into Microtubular Structures on the Surface of Nanoengineered Titanium Implants[J]. Biomacromolecules, 2016, 17(4): 1261-1271.

[3]

Meng Y B, Li X, Li Z Y, et al. Surface Functionalization of Titanium Alloy with miR-29b Nanocapsules to Enhance Bone Regeneration[J]. ACS Appl. Mater. Interfaces, 2016, 8(9): 5783-5793.

[4]

Sagomonyants K B, Jarman-smith M L, Devine J N, et al. The in Vitro Response of Human Osteoblasts to Polyetheretherketone (PEEK) Substrates Compared to Commercially Pure Titanium[J]. Biomaterials, 2008, 29(11): 1563-1572.

[5]

Jo Y K, Choi B H, Zhou C, et al. Bioengineered Mussel Glue Incorporated with a Cell Recognition Motif as an Osteostimulating Bone Adhesive for Titanium Implants[J]. J. Mat. Chem. B, 2015, 3(41): 8102-8114.

[6]

Song P, Hu C, Pei X, et al. Dual Modulation of Crystallinity and Macro-/Microstructures of 3D Printed Porous Titanium Implants to Enhance Stability and Osseointegration[J]. J. Mat. Chem. B, 2019, 7(17): 2865-2877.

[7]

Kurtz S M, Devine J N. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants [J]. Biomaterials, 2007, 28(32): 4845-4869.

[8]

Toth J M, Wang M, Estes B T, et al. Polyetheretherketone as a Biomaterial for Spinal Applications[J]. Biomaterials, 2006, 27(3): 324-334.

[9]

Abu B M S, Cheng M H W, Tang S M, et al. Tensile Properties, Tension-Tension Fatigue and Biological Response of Polyetheretherketone-Hydroxyapatite Composites for Load-Bearing Orthopedic Implants[J]. Biomaterials, 2003, 24(13): 2245-2250.

[10]

Cheng Q W, Yuan B, Chen X N, et al. Regulation of Surface Micro/Nano Structure and Composition of Polyetheretherketone and Their Influence on the Behavior of MC3T3-E1 Pre-osteoblasts[J]. J. Mat. Chem. B, 2019, 7(37): 5713-5724.

[11]

Najeeb S, Zafar M S, Khurshid Z, et al. Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics[J]. J. Prosthodont Res., 2016, 60(1): 12-19.

[12]

Meng X, Zhang J, Chen J, et al. KR-12 Coating of Polyetheretherketone (PEEK) Surface via Polydopamine Improves Osteointegration and Antibacterial Activity in Vivo[J]. J. Mat. Chem. B, 2020, 8(44): 10 190-10 204.

[13]

Xu A X, Liu X C, Gao X, et al. Enhancement of Osteogenesis on Micro/Mano-Topographical Carbon Fiber-Reinforced Polyetheretherketone-Nanohydroxyapatite Biocomposite[J]. Mater. Sci. Eng C-Mater. Biol. Appl., 2015, 48(5): 92-98.

[14]

Mei S, Wang F, Hu X, et al. Construction of a Hierarchical Micro & Nanoporous Surface for Loading Genistein on the Composite of Polyetheretherketone/tantalum Pentoxide Possessing Antibacterial Activity and Accelerated Osteointegration[J]. Biomaterials Science, 2021, 9(1): 167-185.

[15]

Wu X M, Liu X C, Wei J, et al. Nano-TiO2/PEEK Bioactive Composite as a Bone Substitute Material: in Vitro and in Vivo Studies[J]. Int. J. Nanomed., 2012, 7: 1215-1225.

[16]

Zhao Y, Wong H M, Wang W H, et al. Cytocompatibility, Osseointegration, and Bioactivity of Three-Dimensional Porous and Nanostructured Network on Polyetheretherketone[J]. Biomaterials, 2013, 34(37): 9264-9277.

[17]

Ma R, Tang T T. Current Strategies to Improve the Bioactivity of PEEK[J]. Int. J. Mol. Sci., 2014, 15(4): 5426-5245.

[18]

Wang L X, He S, Wu X M, et al. Polyetheretherketone/Nano-Fluorohydroxyapatite Composite with Antimicrobial Activity and Osseointegration Properties[J]. Biomaterials, 2014, 35(25): 6758-6775.

[19]

Chen M L, Ouyang L P, Lu T, et al. Enhanced Bioactivity and Bacteriostasis of Surface Fluorinated Polyetheretherketone[J]. ACS Appl. Mater. Interfaces, 2017, 9(20): 16 825-16 834.

[20]

Chan K W, Liao C Z, Wong H M, et al. Preparation of Polyetheretherketone Composites with Nanohydroxyapatite Rods and Carbon Nanofibers Having High Strength, Good Biocompatibility and Excellent Thermal Stability[J]. RSC Adv., 2016, 6(23): 19 417-19 429.

[21]

Salmani M M, Hashemian M, Khandan A. Therapeutic Effect of Magnetic Nanoparticles on Calcium Silicate Bioceramic in Alternating Field for Biomedical Application[J]. Ceramics International, 2020, 46(17): 27 299-27 307.

[22]

Kao C T, Chen Y J, Huang T H, et al. Assessment of the Release Profile of Fibroblast Growth Factor-2-Load Mesoporous Calcium Silicate/Poly-Epsilon-Caprolactone 3D Scaffold for Regulate Bone Regeneration[J]. Processes, 2020, 8(10): 1 249

[23]

Lei L, Han J, Wen J, et al. Biphasic Ceramic Biomaterials with Tunable Spatiotemporal Evolution for Highly Efficient Alveolar Bone Repair [J]. J. Mat. Chem. B, 2020, 8(35): 8037-8049.

[24]

Hu G F, Quan R F, Chen Y M, et al. Fabrication, Characterization, Bioactivity, and Biocompatibility of Novel Mesoporous Calcium Silicate/Polyetheretherketone Composites[J]. RSC Adv., 2016, 6(62): S7 131-S7 137.

[25]

Zhu Y C, Cao Z, Peng Y, et al. Facile Surface Modification Method for Synergistically Enhancing the Biocompatibility and Bioactivity of Poly(ether ether ketone) That Induced Osteodifferentiation[J]. ACS Appl. Mater. Interfaces, 2019, 11(31): 27 503-27 511.

[26]

Dinh T N, Hou S J, Park S, et al. Gelatin Hydrogel Combined with Polydopamine Coating to Enhance Tissue Integration of Medical Implants[J]. ACS Biomater. Sci. Eng., 2018, 4(10): 3471-3477.

[27]

Wang H, Lin C C, Zhang X R, et al. Mussel-Inspired Polydopamine Coating: A General Strategy to Enhance Osteogenic Differentiation and Osseointegration for Diverse Implants[J]. ACS Appl. Mater. Interfaces, 2019, 11(7): 7615-7625.

[28]

Xian P, Chen Y, Gao S, et al. Polydopamine (PDA) Mediated Nanogranular-Structured Titanium Dioxide (TiO2) Coating on Polyetheretherketone (PEEK) for Oral and Maxillofacial Implants Application[J]. Surface & Coatings Technology, 2020, 401: 126 282.

[29]

Kim H, Lee J-W, Byun D, et al. Coaxial-Nanostructured MnFe2O4 Nanoparticles on Polydopamine-Coated MWCNT for Anode Materials in Rechargeable Batteries[J]. Nanoscale, 2018, 10(43): 20 468

[30]

Ahmad T, Byun H, Shin H J, et al. Polydopamine-Assisted One-Step Modification of Nanofiber Surfaces with Adenosine to Tune the Osteogenic Differentiation of Mesenchymal Stem Cells and the Maturation of Osteoclasts[J]. Biomater. Sci., 2020, 8(10): 2825-2839.

[31]

Li M, Liu Q, Jia Z J, et al. Polydopamine-Induced Nanocomposite Ag/CaP Coatings on the Surface of Titania Nanotubes for Antibacterial and Osteointegration Functions[J]. J. Mat. Chem. B, 2015, 3(45): 8796-8805.

[32]

Ma R, Weng L Q, Bao X J, et al. Characterization of In Situ Synthesized Hydroxyapatite/Polyetheretherketone Composite Materials[J]. Mater. Lett., 2012, 71: 117-119.

[33]

Dong T S, Duan C Y, Wang S, et al. Multifunctional Surface with Enhanced Angiogenesis for Improving Long-Term Osteogenic Fixation of Poly(ether ether ketone) Implants[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 14 971-14 982.

[34]

Godara A, Raabe D, Green S. The Influence of Sterilization Processes on the Micromechanical Properties of Carbon Fiber-Reinforced PEEK Composites for Bone Implant Applications[J]. Acta Biomater., 2007, 3(2): 209-220.

[35]

Deng Y, Shi X Y, Chen Y, et al. Bacteria-Triggered pH-Responsive Osteopotentiating Coating on 3D-Printed Polyetheretherketone Scaffolds for Infective Bone Defect Repair[J]. Ind. Eng. Chem. Res., 2020, 59(26): 12 123-12 135.

[36]

Wen J, Lu T, Wang X, et al. In Vitro and in Vivo Evaluation of Silicate-Coated Polyetheretherketone Fabricated by Electron Beam Evaporation[J]. ACS Appl. Mater Interfaces, 2016, 8(21): 13 197-13 206.

[37]

Meng Q G, Lin J, Fu L S, et al. Sol-Gel Deposition of Calcium Silicate Red-Emitting luminescent Films Doped with Eu3+ [J]. J. Mater. Chem., 2001, 11(12): 3382-3386.

[38]

Gandolfi M G, Ciapetti G, Taddei P, et al. Apatite Formation on Bioactive Calcium-Silicate Cements for Dentistry Affects Surface Topography and Human marrow Stromal Cells Proliferation[J]. Dent. Mater., 2010, 26(10): 974-992.

[39]

Lv R, Pan X, Song L, et al. MicroRNA-200a-3p Accelerates the Progression of Osteoporosis by Targeting Glutaminase to Inhibit Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. Biomedicine & Pharmacotherapy, 2019, 116: 108 960.

[40]

Wang J L, Wei X, Wang A G, et al. KCNQ1OT1 Regulates Osteogenic Differentiation of hBMSC by miR-320a/Smad5 Axis[J]. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6): 2843-2854.

[41]

Wang D, Christensen K, Chawla K, et al. Isolation and Characterization of MC3T3-E1 Preosteoblast Subclones with Distinct in Vitro and in Vivo Differentiation/Mineralization Potential[J]. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 1999, 14(6): 893-903.

[42]

Wang Q, Hu H, Qiao Y, et al. Enhanced Performance of Osteoblasts by Silicon Incorporated Porous TiO2 Coating[J]. J.Mater. Sci. & Tech., 2012, 28(2): 109-117.

[43]

Mieszawska A J, Nadkarni L D, Perry C C, et al. Nanoscale Control of Silica Particle Formation via Silk-Silica Fusion Proteins for Bone Regeneration[J]. Chem. Mater., 2010, 22(20): 5780-5785.

[44]

Zayzafoon M. Calcium/Calmodulin Signaling Controls Osteoblast Growth and Differentiation [J]. J. Cell Biochem., 2006, 97(1): 56-70.

[45]

Zhong W, Li X, Pathak J L, et al. Dicalcium Silicate Microparticles Modulate the Differential Expression of CircRNAs and mRNAs in BMSCs and Promote Osteogenesis Viacirc 1983-miR-6931-Gas7 Interaction[J]. Biomater.Sci., 2020, 8(13): 3664-3677.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/