Lamella Multiple Grained Structure Making 2205 Duplex Stainless Steel with Superior Strength and Ductility

Yu Shi , Yi Song , Peiqing La , Yuehong Zheng , Zhengning Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 754 -760.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 754 -760. DOI: 10.1007/s11595-021-2468-9
Metallic Materials

Lamella Multiple Grained Structure Making 2205 Duplex Stainless Steel with Superior Strength and Ductility

Author information +
History +
PDF

Abstract

We demonstrate a 2205 duplex stainless steel (DSS) synthesized by aluminothermic reaction and followed two-step rolling which had a superior yield strength of 863 MPa, ultimate tensile strength of 1 103 MPa and an elongation of 21% at room temperature. The phase, grain size and distribution of the steel were characterized by optical microscope, X-ray diffraction, electron back-scatter diffraction and transmission electron microscope. The results show that the steel consists of lamellar ferrite and austenitic phase with multiple grain size distribution from nanoscale to microscale. The high strength is attributed to strengthening of high back stress arising from laminated dual-phase heterogeneous ultrafine grained structure and distribution. The high ductility originates from back-stress hardening and dislocation hardening.

Keywords

2205 duplex stainless steel / back stress / strength / ductility

Cite this article

Download citation ▾
Yu Shi, Yi Song, Peiqing La, Yuehong Zheng, Zhengning Li. Lamella Multiple Grained Structure Making 2205 Duplex Stainless Steel with Superior Strength and Ductility. Journal of Wuhan University of Technology Materials Science Edition, 2022, 36(5): 754-760 DOI:10.1007/s11595-021-2468-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei Y, Li Y, Zhu L, et al. Evading the Strength-Ductility Trade-off Dilemma in Steel Through Gradient Hierarchical Nanotwins[J]. Nat. Commun., 2014, 5(1): 1-8.

[2]

Bhattacharjee T, Wani I S, Sheikh S, et al. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing[J]. Sci. Rep., 2018, 8(1): 3276-3283.

[3]

Ma E, Zhu T. Towards Strength—Ductility Synergy Through the Design of Heterogeneous Nanostructures in Metals[J]. Materials Today, 2017, 954: 1-9. S1 369 702 116 302

[4]

Li J, Cao Y, Gao B, et al. Superior Strength and Ductility of 316L Stainless Steel with Heterogeneous Lamella Structure[J]. J. Mater. Sci., 2018, 53(14): 10 442-10 456.

[5]

Ovid’Ko I A, Valiev R Z, Zhu Y T. Review on Superior Strength and Enhanced Ductility of Metallic Nanomaterials[J]. Prog. Mater Sci., 2018, 94: 462-540.

[6]

Cao S C, Liu J, Zhu L, et al. Nature-Inspired Hierarchical Steels[J]. Sci. Rep., 2018, 8(1): 5088-5095.

[7]

Ma E. Instabilities and Ductility of Nanocrystalline and Ultrafine-Grained Metals[J]. Scr. Mater., 2003, 49(7): 663-668.

[8]

Koch C. Optimization of Strength and Ductility in Nanocrystalline and Ultrafine Grained Metals[J]. Scr. Mater., 2003, 49(7): 657-662.

[9]

Alizadeh M, Ghaffari M, Amini R. Properties of High Specific Strength Al—4 wt% Al2O3/B4C Nano-composite Produced by Accumulative Roll Bonding Process[J]. Mater Des., 2013, 50: 427-432.

[10]

Koyama M, Zhang Z, Wang M, et al. Bone-Like Crack Resistance in Hierarchical Metastable Nanolaminate Steels[J]. Science, 2017, 355(6329): 1055-1057.

[11]

Fang T H, Li W L, Tao N R, et al. Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper[J]. Science, 2011, 331(6024): 1587-1590.

[12]

Wu X L, Jiang P, Chen L, et al. Extraordinary Strain Hardening by Gradient Structure[J]. PNAS, 2014, 111(20): 7197-7201.

[13]

Wu X, Yang M, Yuan F, et al. Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility[J]. PNAS, 2015, 112(47): 14 501-14 505.

[14]

Li Z, La P, Ma J, et al. Superior Strength and Ductility of 1045 Steel with Heterogeneous Composite Structure[J]. Mater. Lett., 2019, 238: 191-193.

[15]

Wang Y, Chen M, Zhou F, et al. High Tensile Dductility in a Nanostructured Metal[J]. Nature, 2002, 419(6910): 912-915.

[16]

Lu K. Making Strong Nanomaterials Ductile with Gradients[J]. Science, 2014, 345(6203): 1455-1456.

[17]

Zheng Y, Zhao H, Zhang N, et al. Effect of Excessive Fe2O3 on Microstructural Evolution of Micro/Nanocrystalline 2205 Duplex Stainless Steel Prepared by Aluminothermic Reaction[J]. Frontiers in Materials, 2020, 7: 119-130.

[18]

Chen L, Yuan F P, Jiang P, et al. Mechanical Properties and Nanostructures in a Duplex Stainless Steel Subjected to Equal Channel Angular Pressing[J]. Mater. Sci. Eng., A, 2012, 551: 154-159.

[19]

Ciuca O P, Ota M, Deng S, et al. Harmonic Structure Design of a SUS329J1 Two Phase Stainless Steel and Its Mechanical Properties[J]. Materials Transactions, 2013, 54(9): 1629-1633.

[20]

Son Y I, Lee Y K, Park K T, et al. Ultrafine Grained Ferrite—Martensite Dual Phase Steels Fabricated via Equal Channel Angular Pressing: Microstructure and Tensile Properties[J]. Acta Mater., 2005, 53(11): 3125-3134.

[21]

Meng Q, La P, Yao L, et al. Effect of Al on Microstructure and Properties of Hot-Rolled 2205 Dual Stainless Steel[J]. Adv. Mater. Sci. Eng., 2016, 2016: 1-8.

[22]

Ghosh S K, Mahata D, Roychaudhuri R, et al. Effect of Rolling Deformation and Solution Treatment on Microstructure and Mechanical Properties of a Cast Duplex Stainless Steel[J]. Bull. Mater. Sci., 2012, 35(5): 839-846.

[23]

Liu X Y, Yang C, Yang X R, et al. Dynamic Mechanical Behavior and Adiabatic Shear Bands of Ultrafine Grained Pure Zirconium[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2020, 35(1): 200-207.

[24]

Wu X, Zhu Y. Heterogeneous Materials: a New Class of Materials with Unprecedented Mechanical Properties[J]. Mater. Res. Lett., 2017, 5(8): 527-532.

[25]

Yang M, Pan Y, Yuan F, et al. Back Stress Strengthening and Strain Hardening in Gradient Structure[J]. Mater. Res. Lett., 2016, 4(3): 145-151.

[26]

Shao C W, Zhang P, Zhu Y K, et al. Simultaneous Improvement of Strength and Plasticity: Additional Work-Hardening from Gradient Microstructure[J]. Acta Mater., 2018, 145: 413-428.

[27]

Chen Y, Peng H, Lou L, et al. Electrical, Thermal, and Mechanical Properties of Cu/Ti 3 AlC 2 Functional Gradient Materials Prepared by Low-temperature Spark Plasma Sintering[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(4): 876-882.

[28]

Gao H, Huang Y. Geometrically Necessary Dislocation and Size-Dependent Plasticity[J]. Scr. Mater., 2003, 48(2): 113-118.

[29]

Zandrahimi M, Platias S, Frice D, et al. Effects of Changes in Strain Path on Work Hardening in Cubic Metals[J]. Metall. Trans. A, 1989, 20(11): 2471-2482.

[30]

He B B, Hu B, Yen H W, et al. High Dislocation Density-Induced Large Ductility in Deformed and Partitioned Steels[J]. Science, 2017, 357(6355): 1029-1032.

[31]

Tanaka K, Mori T. The Hardening of Crystals by Non-Deforming Particles and Fibres[J]. Acta Metall., 1970, 18(8): 931-941.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/