Progress in Light-weight High Entropy Alloys

Zhihai Cai , Yu Guo , Jian Liu , Jun Liu , Jie Guo , Xian Du , Shaofu Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 737 -753.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 737 -753. DOI: 10.1007/s11595-021-2467-x
Metallic Materials

Progress in Light-weight High Entropy Alloys

Author information +
History +
PDF

Abstract

High entropy alloys (HEAs) possess good mechanical properties and a wide range of industrial applications. In this paper, phase formation prediction theory, microstructure, properties and preparation methods of light-weight HEAs (LWHEAs) were reviewed. The problems and challenges faced by LWHEAs development were analyzed. The results showed that many aspects are still weak and require investigation for future advanced alloys, such as clarification of the role of entropy in phase formation and properties of HEAs, improved definition and different generations division of HEAs, close-packed hexagonal (HCP) phase structure prediction and corresponding alloy design and fabrication. Finally, some suggestions were presented in this paper including in-depth research on formation mechanism of multi-component alloy phase and strengthening of large-scale HEA preparation methods via technology compounding and 3D printing technology. Also, there is a need for more research on the in-situ preparation of HEA coatings and films, as well as developing LWHEAs with superior strength and elevated temperature resistance or ultra-low temperature resistance to meet the requirements of future engineering applications.

Keywords

high entropy alloys (HEAs) / light-weight / microstructure

Cite this article

Download citation ▾
Zhihai Cai, Yu Guo, Jian Liu, Jun Liu, Jie Guo, Xian Du, Shaofu Huang. Progress in Light-weight High Entropy Alloys. Journal of Wuhan University of Technology Materials Science Edition, 2022, 36(5): 737-753 DOI:10.1007/s11595-021-2467-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Adv. Eng. Mater., 2004, 6(5): 299-303.

[2]

Cantor B, Chang I T H, Knight P, et al. Microstructural Development in Equiatomic Multicomponent Alloys[J]. Materials Science and Engineering: A, 2004, 375–377: 213-218.

[3]

Yeh J W, Chen Y L, Lin S J, et al. High-Entropy Alloys — A New Era of Exploitation[J]. Mater Sci. Forum, 2007, 560: 1-9.

[4]

Shi Y, Yang B, Xie X, et al. Corrosion of Al Xcocrfeni High-Entropy Alloys: Al-Content and Potential Scan-Rate Dependent Pitting Behavior[J]. Corros. Sci., 2017, 119: 33-45.

[5]

Poulia A, Georgatis E, Lekatou A, et al. Microstructure and Wear Behavior of a Refractory High Entropy Alloy[J]. Int. J. Refract. Met. Hard Mater., 2016, 57: 50-63.

[6]

Qiu Y, Thomas S, Gibson M A, et al. Microstructure and Corrosion Properties of the Low-Density Single-Phase Compositionally Complex Alloy Altivcr[J]. Corros. Sci., 2018, 133: 386-396.

[7]

Tan X R. Study on Microstructure and Properties of Lightweight Al2NbTixV2Zry High-Entropy Alloy[D], 2017 Zhengzhou: Zhengzhou University.

[8]

Guo N N, Wang L, Luo L S, et al. Hot Deformation Characteristics and Dynamic Recrystallization of the MoNbHfZrTi Refractory High-Entropy Alloy[J]. Mater. Sci. Eng. A, 2016, 651: 698-707.

[9]

Lee C, Song G, Gao M C, et al. Lattice Distortion in a Strong and Ductile Refractory High-Entropy Alloy[J]. Acta Mater., 2018, 160: 158-172.

[10]

Zou Y, Maiti S, Steurer W, et al. Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy[J]. Acta Mater., 2014, 65: 85-97.

[11]

El-Atwani O, Li N, Li M, et al. Outstanding Radiation Resistance of Tungsten-Based High-Entropy Alloys[J]. Sci. Adv., 2019, 5(3): eaav2002-eaav2002.

[12]

Chen S, Li W, Xie X, et al. Nanoscale Serration and Creep Characteristics of Al0.5CoCrCuFeNi High-Entropy Alloys[J]. J. Alloys Compd., 2018, 752: 464-475.

[13]

Zhang H, Yang Y, Liu L, et al. A Novel FeCoNiCr0.2Si0.2 High Entropy Alloy with an Excellent Balance of Mechanical and Soft Magnetic Properties[J]. J. Magn. Magn. Mater., 2019, 478: 116-121.

[14]

Gao M C, Miracle D B, Maurice D, et al. High-Entropy Functional Materials[J]. J. Mater. Res., 2018, 33(19): 3138-3155.

[15]

Kumar A, Gupta M. An Insight into Evolution of Light Weight High Entropy Alloys: A Review[J]. Metals-Basel, 2016, 6(9): 199

[16]

Youssef K M, Zaddach A J, Niu C, et al. A Novel Low-Density, High-Hardness, High-Entropy Alloy with Close-Packed Single-Phase Nanocrystalline Structures[J]. Materials Research Letters, 2015, 3(2): 95-99.

[17]

Senkov O N, Senkova S V, Woodward C, et al. Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis[J]. Acta Materialia, 2013, 61(5): 1545-1557.

[18]

Feng R, Gao M C, Lee C, et al. Design of Light-Weight High-Entropy Alloys[J]. Entropy, 2016, 18(9): 333

[19]

Zhang Y, Zuo T T, Tang Z, et al. Microstructures and Properties of High-Entropy Alloys[J]. Prog. Mater Sci., 2014, 61: 1-93.

[20]

Gorr B, Azim M, Christ H J, et al. Phase Equilibria, Microstructure, and High Temperature Oxidation Resistance of Novel Refractory High-Entropy Alloys[J]. J. Alloys Compd., 2015, 624: 270-278.

[21]

Senkov O, Miller J D, Miracle D, et al. Accelerated Exploration of Multi-Principal Element Alloys with Solid Solution Phases[J]. Nat. Commun., 2015, 6: 6529.

[22]

Zhang Y, Zhou Y J. Solid Solution Formation Criteria for High Entropy Alloys[J]. Mater. Sci. Forum, 2007, 561–565: 1337-1339.

[23]

Nong Z S, Zhu J C, Cao Y, et al. Stability and Structure Prediction of Cubic Phase in as Cast High Entropy Alloys[J]. Mater. Sci. Technol., 2014, 30(3): 363-369.

[24]

Wang Z, Fang Q, Li J, et al. Effect of Lattice Distortion on Solid Solution Strengthening of Bcc High-Entropy Alloys[J]. Journal of Materials Science & Technology, 2018, 34(2): 349-354.

[25]

Hsu C, Yeh J, Chen S, et al. Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl0.5Fe Alloy with Boron Addition[J]. Merall. Mater. Trans. A, 2004, 35(5): 1465-1469.

[26]

Wu W-H, Yang C-C, Yeh J-W. Industrial Development of High-Entropy Alloys[J]. Eur. J. Control, 2006, 31: 737-747.

[27]

Zhang K, Fu Z, Zhang J, et al. Annealing on the Structure and Properties Evolution of the CoCrFeNiCuAl High-Entropy Alloy[J]. J. Alloys Compd., 2010, 502(2): 295-299.

[28]

Zhang H, Pan Y, He Y, et al. Microstructure and Properties of 6FeNiCo SiCrAlTi High-Entropy Alloy Coating Prepared by Laser Cladding[J]. Appl. Surf. Sci., 2011, 257(6): 2259-2263.

[29]

Cheng H, Xie Y, Tang Q, et al. Microstructure and Mechanical Properties of FeCoCrNiMn High-Entropy Alloy Produced by Mechanical Alloying and Vacuum Hot Pressing Sintering[J]. T Nonferr. Metal. Soc., 2018, 28(7): 1360-1367.

[30]

Du X H, Wang R, Chen C, et al. Preparation of a Light-Weight Mgcaallicu High-Entropy Alloy[J]. Key Eng. Mater., 2017, 727: 132-135.

[31]

Hammond V H, Atwater M A, Darling K A, et al. Equal-Channel Angular Extrusion of a Low-Density High-Entropy Alloy Produced by High-Energy Cryogenic Mechanical Alloying[J]. Jom-Us, 2014, 66(10): 2021-2029.

[32]

Zhao Xuerou L Y, Shi T. Advances in the Study of Phase Formation Theory of High Entropy Alloys[J]. Materials Reports, 2019, 33(7): 1174-1181.

[33]

Zhang Y, Chen M B, Yang X. Advanced Technology in High-Entropy Alloys[M], 2017 Beijing: Chemical Industry Press.

[34]

Singh A K, Kumar N, Dwivedi A, et al. A Geometrical Parameter for the Formation of Disordered Solid Solutions in Multi-Component Alloys[J]. Intermetallics, 2014, 53: 112-119.

[35]

Ren M-X, Li B-S, Fu H-Z. Formation Condition of Solid Solution Type High-Entropy Alloy[J]. T. Nonferr. Metal. Soc., 2013, 23(4): 991-995.

[36]

Yang X, Zhang Y. Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys[J]. Mater. Chem. Phys., 2012, 132(2–3): 233-238.

[37]

Feng R, Liaw P K, Gao M C, et al. First-Principles Prediction of High-Entropy-Alloy Stability[J]. npj Computational Materials, 2017, 3(1): 50

[38]

Widom M, Huhn W P, Maiti S, et al. Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 196-200.

[39]

Zhang F, Zhang C, Chen S-L, et al. An Understanding of High Entropy Alloys from Phase Diagram Calculations[J]. Calphad, 2014, 45: 1-10.

[40]

Miracle D B, Miller J D, Senkov O N, et al. Exploration and Development of High Entropy Alloys for Structural Applications[J]. Entropy-Switz, 2014, 16(1): 494-525.

[41]

Xie L, Brault P, Thomann A-L, et al. Molecular Dynamics Simulation of Al-Co-Cr-Cu-Fe-Ni High Entropy Alloy Thin Film Growth[J]. Intermetallics, 2016, 68: 78-86.

[42]

Tian F, Varga L K, Vitos L. Predicting Single Phase CrMoWx High Entropy Alloys from Empirical Relations in Combination with First-Principles Calculations[J]. Intermetallics, 2017, 83: 9-16.

[43]

Nong Z-S, Zhu J-C, Yu H-L, et al. First Principles Calculation of Intermetallic Compounds in FeTiCoNiVCrMnCuAl System High Entropy Alloy[J]. T. Nonferr. Metal. Soc., 2012, 22(6): 1437-1444.

[44]

Zhang C, Zhang F, Chen S, et al. Computational Thermodynamics Aided High-Entropy Alloy Design[J]. Jom-Us, 2012, 64(7): 839-845.

[45]

Zhang C, Zhang F, Diao H, et al. Understanding Phase Stability of Al-Co-Cr-Fe-Ni High Entropy Alloys[J]. Mater. Design, 2016, 109: 425-433.

[46]

Raghavan R, Kumar K H, Murty B. Analysis of Phase Formation in Multi-Component Alloys[J]. J. Alloys Compd., 2012, 544: 152-158.

[47]

Tseng K, Yang Y, Juan C, et al. A Light-Weight High-Entropy Alloy Al20Be20Fe10Si15Ti35[J]. Sci. China Technol. Sci., 2018, 61(2): 184-188.

[48]

Maulik O, Kumar V. Synthesis of AlFeCuCrMgx (x= 0, 0.5, 1, 1.7) Alloy Powders by Mechanical Alloying[J]. Mater. Charact., 2015, 110: 116-125.

[49]

Meenashisundaram G K, Gupta M. Low Volume Fraction Nano-Titanium Particulates for Improving the Mechanical Response of Pure Magnesium[J]. J. Alloys Compd., 2014, 593: 176-183.

[50]

Sun W, Huang X, Luo A A. Phase Formations in Low Density High Entropy Alloys[J]. Calphad, 2017, 56: 19-28.

[51]

Miracle D B, Senkov O N. A Critical Review of High Entropy Alloys and Related Concepts[J]. Acta Mater., 2017, 122: 448-511.

[52]

Stepanov N, Yurchenko N Y, Panina E, et al. Precipitation-Strengthened Refractory Al0.5CrNbTi2V0.5 High Entropy Alloy[J]. Mater. Lett., 2017, 188: 162-164.

[53]

Senkov O N, Miller J, Miracle D B, et al. Accelerated Exploration of Multi-Principal Element Alloys with Solid Solution Phases[J]. Nat. Commun., 2015, 6(1): 6529-6529.

[54]

Sanchez J M, Vicario I, Albizuri J, et al. Compound Formation and Microstructure of as-Cast High Entropy Aluminums[J]. Metals-Basel, 2018, 8(3): 167

[55]

Feng R, Gao M C, Zhang C, et al. Phase Stability and Transformation in a Light-Weight High-Entropy Alloy[J]. Acta Mater., 2018, 146: 280-293.

[56]

Sundman B, Jansson B, Andersson J-O. The Thermo-Calc Databank System[J]. Calphad, 1985, 9(2): 153-190.

[57]

Gao M C, Carney C, Dogan O N, et al. Design of Refractory High-Entropy Alloys[J]. Jom-Us, 2015, 67(11): 2653-2669.

[58]

Zhang B, Gao M, Zhang Y, et al. Senary Refractory High Entropy Alloy MoNbTaTiVW[J]. Mater. Sci. Technol., 2015, 31(10): 1207-1213.

[59]

Zhang B, Gao M, Zhang Y, et al. Senary Refractory High-Entropy Alloy CrxMoNbTaVW[J]. Calphad, 2015, 51: 193-201.

[60]

Gao M C, Zhang B, Yang S, et al. Senary Refractory High-Entropy Alloy HfNbTaTiVZr[J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3333-3345.

[61]

Zhang C, Gao M C. Calphad Modeling of High-Entropy Alloys[M], 2016 Berlin: Springer.

[62]

Yao H, Qiao J, Gao M, et al. NbTaV-(Ti, W) Refractory High-Entropy Alloys: Experiments and Modeling[J]. Mater. Sci. Eng., A, 2016, 674: 203-211.

[63]

Stepanov N, Yurchenko N Y, Skibin D, et al. Structure and Mechanical Properties of the AlCrxNbTiV (x= 0, 0.5, 1, 1.5) High Entropy Alloys[J]. J. Alloys Compd., 2015, 652: 266-280.

[64]

Yang T, Xia S, Liu S, et al. Effects of Al Addition on Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy[J]. Mater. Sci. Eng., A, 2015, 648: 15-22.

[65]

Yurchenko N Y, Stepanov N D, Gridneva A O, et al. Effect of Cr and Zr on Phase Stability of Refractory Al-Cr-Nb-Ti-V-Zr High-Entropy Alloys[J]. J. Alloys Compd., 2018, 757: 403-414.

[66]

Gao M, Zhao J-C, Morral J. The Thermodynamics and Kinetics of High-Entropy Alloys[M], 2017 Berlin: Springer.

[67]

Li R, Gao J C, Fan K. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys[C]. Mater. Sci. Forum, 2010: 265–271

[68]

Chen Y-L, Tsai C-W, Juan C-C, et al. Amorphization of Equimolar Alloys with Hcp Elements During Mechanical Alloying[J]. J. Alloy Compd., 2010, 506(1): 210-215.

[69]

Yang X, Chen S, Cotton J D, et al. Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, and Lithium[J]. Jom-Us, 2014, 66(10): 2009-2020.

[70]

Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on Structure and Mechanical Properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) High Entropy Alloys[J]. Mater. Sci. Technol., 2015, 31(10): 1184-1193.

[71]

Tseng K, Yang Y, Juan C, et al. A Light-Weight High-Entropy Alloy Al 20 Be 20 Fe 10 Si 15 Ti 35[J]. Sci. China Technol. Sci., 2018, 61(2): 184-188.

[72]

Varalakshmi S, Kamaraj M, Murty B. Synthesis and Characterization of Nanocrystalline Alfeticrzncu High Entropy Solid Solution by Mechanical Alloying[J]. J. Alloys Compd., 2008, 460(1–2): 253-257.

[73]

Varalakshmi S, Kamaraj M, Murty B S. Processing and Properties of Nanocrystalline Cunicoznalti High Entropy Alloys by Mechanical Alloying[J]. Mat. Sci. Eng. A-Struct., 2010, 527(4–5): 1027-1030.

[74]

Maulik O, Kumar D, Kumar S, et al. Structure and Properties of Lightweight High Entropy Alloys: A Brief Review[J]. Mater. Res. Experss, 2018, 5

[75]

Chuang M-H, Tsai M-H, Wang W-R, et al. Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys[J]. Acta Mater., 2011, 59(16): 6308-6317.

[76]

Chen L, Bobzin K, Zhou Z, et al. Wear Behavior of HVOF-Sprayed Al0.6TiCrFeCoNi High Entropy Alloy Coatings at Different Temperatures[J]. Surf. Coat. Technol., 2019, 358: 215-222.

[77]

Huang P-K, Yeh J-W, Shun T-T, et al. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating[J]. Adv. Eng. Mater., 2004, 6(1–2): 74-78.

[78]

Guo Y, Shang X, Liu Q. Microstructure and Properties of in-Situ Tin Reinforced Laser Cladding CoCr2FeNiTix High-Entropy Alloy Composite Coatings[J]. Surf. Coat. Technol., 2018, 344: 353-358.

[79]

Lin C-M, Tsai H-L. Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy[J]. Intermetallics, 2011, 19(3): 288-294.

[80]

Qiu X-W, Zhang Y-P, He L, et al. Microstructure and Corrosion Resistance of AlCrFeCuCo High Entropy Alloy[J]. J. Alloys Compd., 2013, 549: 195-199.

[81]

Lee C P, Chang C C, Chen Y Y, et al. Effect of the Aluminium Content of AlxCrFe1.5MnNi0.5 High-Entropy Alloys on the Corrosion Behaviour in Aqueous Environments[J]. Corros. Sci., 2008, 50(7): 2053-2060.

[82]

Li B-Y, Peng K, Hu A-P, et al. Structure and Properties of FeCoNi CrCu0.5Alx High-Entropy Alloy[J]. T. Nonferr. Metal Soc., 2013, 23(3): 735-741.

[83]

Qiu Y, Thomas S, Gibson M A, et al. Corrosion of High Entropy Alloys[J]. npj Materials Degradation, 2017, 1(1): 15

[84]

Yu Y, Xie F, Zhang T, et al. Microstructure Control and Corrosion Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy[J]. Rare Metal Mat. Eng., 2012, 41(5): 862-866.

[85]

Xie H-B, Liu G-Z, Guo J-J, et al. Research on Effects of Tempering Process on Microstructure and Corrosion Resistance of AlFeCrCoCu High-Entropy Alloy[J]. Rare Metal Mat. Eng., 2015, 43(4): 51-53.

[86]

Wen X, Jin G, Xuejia P, et al. Effect of Heat Treatment on Microstructure and Corrosion Resistance of NiCrCoTiV High-Entropy Alloy by Vacuum Hotsintering.[J]. Materials Reports B: Research Reports, 2017, 31(12): 79-83.

[87]

Butler T M, Weaver M L. Oxidation Behavior of Arc Melted AlCo-CrFeNi Multi-Component High-Entropy Alloys[J]. J. Alloys Compd., 2016, 674: 229-244.

[88]

Butler T M, Alfano J P, Martens R L, et al. High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys[J]. Jom-Us, 2015, 67(1): 246-259.

[89]

Tsai K Y, Tsai M H, Yeh J W. Sluggish Diffusion in Co-Cr-Fe-Mn-Ni High-Entropy Alloys[J]. Acta Mater., 2013, 61(13): 4887-4897.

[90]

Chen H, Kauffmann A, Gorr B, et al. Microstructure and Mechanical Properties at Elevated Temperatures of a New Al-Containing Refractory High-Entropy Alloy Nb-Mo-Cr-Ti-Al[J]. J. Alloys Compd., 2016, 661: 206-215.

[91]

Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Effect of Al on Structure and Mechanical Properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) High Entropy Alloys[J]. Mater. Sci. Technol., 2015, 31(10): 1184-1193.

[92]

Stepanov N, Shaysultanov D, Salishchev G, et al. Structure and Mechanical Properties of a Light-Weight AlNbTiV High Entropy Alloy[J]. Mater. Lett., 2015, 142: 153-155.

[93]

Maulik O, Kumar D, Kumar S, et al. Structural Evolution of Spark Plasma Sintered AlFeCuCrMgx (x=0, 0.5, 1, 1.7) High Entropy Alloys[J]. Intermetallics, 2016, 77(2016): 46-56.

[94]

Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in as-Cast and Wrought Conditions[J]. Mater. Sci. Eng., A, 2012, 533: 107-118.

[95]

Tsai C-W, Chen Y-L, Tsai M-H, et al. Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5CoCrCuFeNi[J]. J. Alloys Compd., 2009, 486(1): 427-435.

[96]

Lai C-H, Lin S-J, Yeh J-W, et al. Preparation and Characterization of AlCrTaTiZr Multi-Element Nitride Coatings[J]. Surf. Coat. Technol., 2006, 201(6): 3275-3280.

[97]

Ren B, Yan S Q, Zhao R F, et al. Structure and Properties of (AlCrMo-NiTi)Nx and (AlCrMoZrTi)Nx Films by Reactive Rf Sputtering[J]. Surf. Coat. Technol., 2013, 235: 764-772.

[98]

Shen W-J, Tsai M-H, Chang Y-S, et al. Effects of Substrate Bias on the Structure and Mechanical Properties of (Al1.5CrNb0.5Si0.5Ti)Nx Coatings[J]. Thin Solid Films, 2012, 520(19): 6183-6188.

[99]

Li R, Liaw P, Zhang Y. Synthesis of AlxCoCrFeNi High-Entropy Alloys by High-Gravity Combustion from Oxides[J]. Mater. Sci. Eng., A, 2017, 707: 668-673.

[100]

Paul A. Comments on “Sluggish Diffusion in Co-Cr-Fe-Mn-Ni High-Entropy Alloys” by K.Y. Tsai, M.H. Tsai and J.W. Yeh[J]. Scripta Mater., 2017, 135: 153-157.

[101]

Zhang W, Liaw P K, Zhang Y. Science and Technology in High-Entropy Alloys[J]. Sci China Mater, 2018, 61(1): 2-22.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/