Synthesis and Characterization of Polyaniline/MgTiO3 Composite with Excellent Thermal and Electrochemical Performance

Yazhou Jin , Weiwei Xing , Siyu Zhao , Xiaojie Gu , Liping Chi , Meng Yuan , Fen Xu , Shaoxu Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 730 -736.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 730 -736. DOI: 10.1007/s11595-021-2466-y
Organic Materials

Synthesis and Characterization of Polyaniline/MgTiO3 Composite with Excellent Thermal and Electrochemical Performance

Author information +
History +
PDF

Abstract

This article explores the effects of doping ferroelectric materials MgTiO3 with different proportions on the properties of polyaniline (PANI). PANI / MgTiO3 composites were prepared by in-situ composite method. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to characterize the structure of the composites. Scanning electron microscope (SEM) was used to characterize the morphology of the composites.The thermal stability of the composites was investigated by thermogravimetry (TG) and derivative thermogravimetry (DTG). Electrochemical methods (cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), and constant current charge-discharge test) were used to compare and analyze the electrochemical performance of the composites.TG-DTG analysis and electrochemical experiments all show that the thermal stability and electrochemical properties of the PANI / MgTiO3 composite with a mass ratio of 82/18 (w/w) are the best. The results indicate that there is a synergistic effect between PANI and MgTiO3, which improves the performances of the PANI when the appropriate amount of MgTiO3 is added.

Keywords

PANI/MgTiO3 composites / in-situ composite method / thermal stability / electrochemical performance

Cite this article

Download citation ▾
Yazhou Jin, Weiwei Xing, Siyu Zhao, Xiaojie Gu, Liping Chi, Meng Yuan, Fen Xu, Shaoxu Wang. Synthesis and Characterization of Polyaniline/MgTiO3 Composite with Excellent Thermal and Electrochemical Performance. Journal of Wuhan University of Technology Materials Science Edition, 2022, 36(5): 730-736 DOI:10.1007/s11595-021-2466-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saad GR, Ezz AA, Ahmed HA. Cure Kinetics, Thermal Stability, and Dielectric Properties of Epoxy/Barium Ferrite/Polyaniline Composites[J]. Thermochimica Acta, 2015, 599: 84-94.

[2]

Li M, Jing L. Electrochemical Behavior of Acetaminophen and Its Betection on the PANI-MWCNTs Composite Modified Electrode[J]. Electrochimica Acta, 2007, 52(9): 3250-3257.

[3]

Liu P, Yan J, Guang Z, et al. Recent Advancements of Polyaniline-Based Nanocomposites for Supercapacitors[J]. Journal of Power Sources, 2019, 424: 108-130.

[4]

Sadak O, Prathap MUA, Gunasekaran S. Facile Fabrication of Highly Ordered Polyaniline-Exfoliated Graphite Composite for Enhanced Charge Storage[J]. Carbon., 2019, 144: 756-763.

[5]

Chethan B, Raj Prakash HG, Ravikiran YT, et al. Enhancing Humidity Sensing Performance of Polyaniline/Water Soluble Graphene Oxide Composite[J]. Talanta, 2019, 196: 337-344.

[6]

Hu X, Liu L, Zeng HY, et al. An Advanced NiCoFeO/Polyaniline Composite for High-Performance Supercapacitors[J]. Chem. Asian J., 2019, 14(7): 977-985.

[7]

Faisal M, Harraz FA, Ismail AA, et al. Novel Synthesis of Polyaniline/SrSnO3 Nanocomposites With Enhanced Photocatalytic Activity[J]. Ceramics International, 2019, 45(16): 20 484-20 492.

[8]

Abdunazar A, Zhang Y, Muslim A, et al. Preparation and Electrochemical Characterization of Carbon Dots/Polyaniline Composite Materials[J]. Polymer Bulletin, 2019, 77(3): 1067-1080.

[9]

Wang S, Li Y, Wang J, et al. A New Evidence for the Interaction Between the Two Components in PANI/La Composites[J]. Thermochimica Acta., 2017, 658: 7-13.

[10]

Chen S, Wei Z, Qi X, et al. Nanostructured Polyaniline-Decorated Pt/C@PANI Core-Shell Catalyst with Enhanced Durability and Activity[J]. J. Am. Chem. Soc., 2012, 134(32): 13 252-13 255.

[11]

Xie A, Tao F, Li T, et al. Graphene-Cerium Oxide/Porous Polyaniline Composite as a Novel Electrode Material for Supercapacitor[J]. Electrochimica Acta, 2018, 261: 314-322.

[12]

Shaban M, Rabia M, Fathallah W, et al. Preparation and Characterization of Polyaniline and Ag/Polyaniline Composite Nanoporous Particles and Their Antimicrobial Activities[J]. Journal of Polymers and the Environment, 2017, 26(2): 434-442.

[13]

Chen W, Rakhi RB, Alshareef HN. Capacitance Enhancement of Polyaniline Coated Curved-Graphene Supercapacitors in a Redox-Active Electrolyte[J]. Nanoscale, 2013, 5(10): 4134-4138.

[14]

Dere A. Novel Lead — Free Relaxor Ferroelectric Based on Mg1−xSrx TiO3 (MTO:Sr) Nanostructured for Radar Absorbing Applications[J]. Journal of Alloys and Compounds, 2019, 771: 471-476.

[15]

Singh J, Bahel S. Synthesis of Single Phase MgTiO3 and Influence of Sn4+ Substitution on Its Structural, Dielectric and Electrical Properties[J]. Journal of Alloys and Compounds, 2020, 816: 152.

[16]

Zhang J, Yue Z, Luo Y, et al. MgTiO3/TiO2/MgTiO3: An Ultrahigh-Q and Temperature-Stable Microwave Dielectric Ceramic Through Co-fired Trilayer Architecture[J]. Ceramics International, 2018, 44(17): 21 000-21 003.

[17]

Wang S, Huang Z, Wang J, et al. Thermal Stability of Several Polyaniline/Rare Earth Oxide Composites (I): Polyaniline/CeO2 Composites[J]. Journal of Thermal Analysis and Calorimetry, 2011, 107(3): 1199-1203.

[18]

Meral K, Emine E, Mehmet S, et al. Conductive Composite Films Prepared Using Undoped Polyaniline and Poly(methyl methacrylate)[J]. Polymer Journal, 2003, 35(11): 879-883.

[19]

Karakisla M, Erdem E, Sacak MJPJ, et al. Fe-Polyaniline Composite Nanofiber Catalyst for Chemoselective Hydrolysis of Oxime[J]. Polym. J., 2003, 35: 879-883.

[20]

Hu Y, Tong X, Zhuo H, et al. Biomass-Based Porous N-Self-Doped Carbon Framework/Polyaniline Composite with Outstanding Supercapacitance[J]. ACS Sustain. Chem. Eng., 2017, 5: 8663-8674.

[21]

Sayah A, Habelhames F, Bahloul A, et al. Electrochemical Synthesis of Polyaniline-Exfoliated Graphene Composite Films and Their Capacitance Properties[J]. J. Electroanal. Chem., 2018, 818: 26-34.

[22]

Koluaçık E, Karabiberoğlu U, Dursun Z. Electrochemical Determination of Serotonin Using Pre-treated Multi-walled Carbon Nanotube-polyaniline Composite Electrode[J]. Electroanal., 2018, 30: 2977-2987.

[23]

Sahnoun S, Boutahala M. Adsorption Removal of Tartrazine by Chitosan/Polyaniline Composite: Kinetics and Equilibrium Studies[J]. Int. J. Biol. Macromol., 2018, 114: 1345-1353.

[24]

Shahabuddin S, Muhamad Sarih N, Mohamad S, et al. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light[J]. Polymers, 2016, 8(2): 27

[25]

Xu Y, Ma Y, Ji H, et al. Enhanced Long-Wavelength Light Utilization with Polyaniline/Bismuth-Rich Bismuth Oxyhalide Composite towards Photocatalytic Degradation of Antibiotics[J]. J. Colloid Interface Sci., 2019, 537: 101-111.

[26]

Gupta K, Jana PC, Meikap AK. Optical and Electrical Transport Properties of Polyaniline-Silver Nanocomposite[J]. Synthetic Metals, 2010, 160(13–14): 1566-1573.

[27]

Ding PX, Zeng HY, Xu S, et al. Electrochemical Behaviors of Iron-Based Layered Bouble Hydroxide Thin-Films[J]. Journal of Materials Science: Materials in Electronics, 2017, 29(4): 2748-2757.

[28]

Li Y, Xing R, Zhang B, et al. Fluoro-Functionalized Graphene Oxide/Polyaniline Composite Electrode Material For Supercapacitors[J]. Polymers and Polymer Composites, 2018, 27(2): 76-81.

[29]

Relekar BP, Fulari AV, Lohar GM, et al. Development of Porous Manganese Oxide/Polyaniline Composite Using Electrochemical Route for Electrochemical Supercapacitor[J]. Journal of Electronic Materials, 2019, 48(4): 2449-2455.

[30]

Jiang Q, Shang Y, Sun Y, et al. Flexible and Multi-Form Solid-State Supercapacitors Based on Polyaniline/Graphene Oxide/CNT Composite Films and Fibers[J]. Diamond and Related Materials, 2019, 92: 198-207.

[31]

Snook GA, Kao P, Best AS. Conducting-Polymer-Based Supercapacitor Bevices and Electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12.

[32]

Chen N, Liu C, Tan L, et al. Facile Synthesis of 4-Methylaniline Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors[J]. Journal of Electronic Materials, 2019, 48(7): 4463-4472.

[33]

Liu H, Jing R, You C, et al. Brush-Structured Sulfur-Polyaniline-Graphene Composite as Cathodes for Lithium-Sulfur Batteries[J]. MRS Communications, 2019: 1–6

[34]

Zhang X, Lin Q, Zhang X, et al. A Novel 3D Conductive Network-Based Polyaniline/Graphitic Mesoporous Carbon Composite Electrode with Excellent Electrochemical Performance[J]. Journal of Power Sources, 2018, 401: 278-286.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/