Hypereutectic Al-Si Matrix Composites Prepared by In Situ Fe2O3/Al System

Yifei Wang , Jing Zhang , Chichi Sun , Zhaoxia Cheng , Zhouyi Pang , Ling Wang , Hongmei Chen , Ning Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 636 -643.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 636 -643. DOI: 10.1007/s11595-021-2455-1
Advanced Materials

Hypereutectic Al-Si Matrix Composites Prepared by In Situ Fe2O3/Al System

Author information +
History +
PDF

Abstract

Al2O3 particles reinforced hypereutectic Al-Si composites were prepared by in situ Fe2O3/Al reaction system. The thermodynamic analysis and microstructure evolution were investigated by differential scanning calorimetry, optical microscope, scanning electronic microscopy and transmission electron microscope. Results show that the reaction between Fe2O3 and Al is spontaneous which can be separated into two steps at different temperatures. The in situ Al2O3 particles in nano size distribute on the Al matrix accompanied with long needle-shaped β Fe-rich intermetallic phase. With different content of Mn addition, β phase can be modified to α-Al15(Mn,Fe)3Si2 and δ-Al4(Fe,Mn)Si2. Both tensile strength and elongation results at room temperature and 300 °C reveal that the optimal Fe-rich intermetallic phase is finer Chinese-script and polyhedral α phase with a Mn/Fe mass ratio 0.5 for the composites. Both in situ Al2O3 particles and α-Fe phases contribute to the properties improvement of the composites

Keywords

hypereutectic Al-Si alloys / particles reinforced composites / Al2O3 particles / Fe-rich intermetallic compounds

Cite this article

Download citation ▾
Yifei Wang, Jing Zhang, Chichi Sun, Zhaoxia Cheng, Zhouyi Pang, Ling Wang, Hongmei Chen, Ning Liu. Hypereutectic Al-Si Matrix Composites Prepared by In Situ Fe2O3/Al System. Journal of Wuhan University of Technology Materials Science Edition, 2022, 36(5): 636-643 DOI:10.1007/s11595-021-2455-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiao X Y, Wang J, Liu C F, et al. Influence of Slow-shot Speed on PSPs and Porosity of AlSi17Cu2.5 Alloy During High Pressure Die Casting[J]. J. Mater. Process. Tech., 2019, 268: 63-69.

[2]

Yu W B, Zhao H B, Wang L, et al. The Influence of T6 Treatment on Fracture Behavior of Hypereutectic Al-Si HPDC Casting Alloy[J]. J. Alloy. Compd., 2018, 731: 444-451.

[3]

Gietzelt T, Wunsch T, Messerschmidt F, et al. Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-compacted Hypereutectic Al-Si Alloys[J]. Metals, 2016, 6(12): 295

[4]

Wang J, Guo Z, Song J L, et al. On the Growth Mechanism of the Primary Silicon Particle in a Hypereutectic Al-20 wt%Si Alloy Using Synchrotron X-ray Tomography[J]. Mater. Design, 2018, 137: 176-183.

[5]

Jeon J H, Shin J H, Bae D H. Si Phase Modification on the Elevated Temperature Mechanical Properties of Al-Si Hypereutectic Alloys[J]. Mater. Sci. Eng. A, 2019, 748(6): 367-370.

[6]

Liu T T, Pang X X, Xian Y J, et al. Effect of Al2O3np on the Properties and Microstructure of B4Cp/Al Composites[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2020, 35: 514-519.

[7]

Chen G Q, Yang W S, Xin L, et al. Mechanical Properties of Al Matrix Composite Reinforced with Diamond Particles with W Coatings Prepared by the Magnetron Sputtering Method[J]. J. Alloy. Compd., 2018, 735: 777-786.

[8]

Monje I E, Louis E, Molina J M. Interfacial Nano-engineering in Al/ Diamond Composites for Thermal Management by in situ Diamond Surface Gas Desorption[J]. Scripta Mater., 2016, 115: 159-163.

[9]

Li P T, Li Y G, Wu Y Y, et al. Distribution of TiB2 Particles and Its Effect on the Mechanical Properties of A390 Alloy[J]. Mater. Sci. Eng. A, 2012, 546: 146-152.

[10]

Wu C C, Gao T, Sun Q Q, et al. A Novel Method of Coating Ex-situ SiC Particles with In-situ SiC Interlayer in Al-Si-C Alloy[J]. J. Alloy. Compd., 2018, 754: 39-47.

[11]

Fan T, Zhang D, Yang G, et al. Fabrication of In situ Al2O3/Al Composite via Remelting[J]. J. Mater. Process. Tech., 2013, 142(2): 556-561.

[12]

Maity P, Chakraborty P, Panigrahi S. Preparation of Al-MgAl2O4-MgO In Situ Particle-composites by Addition of MnO2 Particles to Molten Al-2 wt% Mg Alloys[J]. Mater. Lett., 1994, 20(3–4): 93-97.

[13]

Padmavardhani D, Gomez A, Abbaschian R. Synthesis and Microstructural Characterization of NiAl/Al2O3 Functionally Gradient Composites[J]. Intermetallics, 1998, 6(4): 229-241.

[14]

Yang B, Sun M, Gan G S, et al. In Situ Al2O3 Particle-reinforced Al and Cu Matrix Composites Synthesized by Displacement Reactions[J]. J. Alloy. Compd., 2010, 494(1–2): 261-265.

[15]

Wang H M, Li G R, Zhao Y T, et al. In Situ Fabrication and Microstructure of Al2O3 Particles Reinforced Aluminum Matrix Composites[J]. Mater. Sci. Eng. A, 2010, 527(12): 2881-2885.

[16]

Lin C, Wu S S, Zhong G, et al. Effect of Ultrasonic Vibration on Fe-containing Intermetallic Compounds of Hypereutectic Al-Si Alloys with High Fe Content[J]. T. Nonferr. Metal. Soc. China, 2013, 23(5): 1245-1252.

[17]

Lin C, Wu S S, S L, et al. Influence of High Pressure and Manganese Addition on Fe-rich Phases and Mechanical Properties of Hypereutectic Al-Si Alloy with Rrheo-squeeze Casting[J]. T. Nonferr. Metal. Soc. China, 2019, 29(2): 253-262.

[18]

Becker H, Bergh T, Vullum P E, et al. β- and δ-Al-Fe-Si Intermetallic Phase, Their Intergrowth and Polytype Formation[J]. J. Alloy. Compd., 2019, 780: 917-929.

[19]

Wu Y N, Liao H C. Corrosion Behavior of Extruded Near Eutectic Al-Si-Mg and 6063 Alloys[J]. J. Mater. Sci. Tech., 2013, 29(4): 380-386.

[20]

Gao T, Hu K Q, Wang L S, et al. Morphological Evolution and Strengthening Behavior of α-Al(Fe,Mn)Si in Al-6Si-2Fe-xMn Alloys[J]. Results Phys., 2017, 7: 1051-1054.

[21]

Gao T, Wu Y Y, Li C, et al. Morphologies and Growth Mechanisms of α-Al(FeMn)Si in Al-Si-Fe-Mn Alloy[J]. Mater. Lett., 2013, 110: 191-194.

[22]

Öz T, Karaköse E, Keskin M. Impact of Beryllium Additions on Thermal and Mechanical Properties of Conventionally Solidified and Melt-spun Al-4.5 wt%Mn-x wt%Be (x = 0, 1, 3, 5) Alloys[J]. Mater. Design, 2013, 50: 399-421.

[23]

Todaro C J, Easton M A, Qiu D, et al. Effect of Ultrasonic Melt Treatment on Intermetallic Phase Formation in a Manganese-modified Al-17Si-2Fe Alloy[J]. J. Alloy. Compd., 2019, 271: 346-356.

[24]

Lin C, Wu S S, S L, et al. Effects of Ultrasonic Vibration and Manganese on Microstructure and Mechanical Properties of Hypereutectic Al-Si Alloys with 2%Fe[J]. Intermetallics, 2013, 32: 176-183.

[25]

Lin C, Wu S S, S L, et al. Microstructure and Mechanical Properties of Rheo-diecast Hypereutectic Al-Si Alloy with 2%Fe Assisted with Ultrasonic Vibration Process[J]. J. Alloy. Compd., 2013, 568: 42-48.

[26]

Askeland D R, Phule P P. Essentials of Materials Science and Engineering[M], 2005 Columbia: Thomson.

[27]

Chen H L, Chen Q, Du Y, et al. Update of Al-Fe-Si, Al-Mn-Si and Al-Fe-Mn-Si Thermodynamic Descriptions[J]. T. Nonferr. Metal. Soc. China, 2014, 24(7): 2041-2053.

[28]

Becker H, Bergh T, Vullum P E, et al. Effect of Mn and Cooling Rates on a-, β- and á-Al-Fe-Si Intermetallic Phase Formation in a Secondary Al-Si Alloy[J]. Materialia, 2019, 5: 100.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/