Mechanical Properties and Microstructure of Al2O3/SiC Composite Ceramics for Solar Heat Absorber

Jianfeng Wu , Yang Zhou , Mengke Sun , Xiaohong Xu , Kezhong Tian , Jiaqi Yu

Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 615 -623.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2022, Vol. 36 ›› Issue (5) : 615 -623. DOI: 10.1007/s11595-021-2452-4
Advanced Materials

Mechanical Properties and Microstructure of Al2O3/SiC Composite Ceramics for Solar Heat Absorber

Author information +
History +
PDF

Abstract

Al2O3/SiC composite ceramics were prepared from α-Al2O3 and SiC by a pressureless sinter method in this study. The effect of SiC contents on the mechanic properties, phase compositions and microstructure is studied. Experimental results show that the vickers hardness, wear resistance and thermal conductivity of the samples increase with the increase in the SiC content, and the hardness of the sample reaches 16.22 GPa, and thermal conductivity of the sample reaches 25.41 W/(m.K) at room temperature when the SiC content is 20 wt%(B5) and the sintering temperature is at 1 640 °C. Higher hardness means higher scour resistance, and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation. The results indicate the mechanism of improving mechanical properties of Al2O3/SiC composite ceramics: SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al2O3, while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular.

Keywords

Al2O3/SiC composite ceramics / hardness / thermal conductivity / solar heat absorption material

Cite this article

Download citation ▾
Jianfeng Wu, Yang Zhou, Mengke Sun, Xiaohong Xu, Kezhong Tian, Jiaqi Yu. Mechanical Properties and Microstructure of Al2O3/SiC Composite Ceramics for Solar Heat Absorber. Journal of Wuhan University of Technology Materials Science Edition, 2022, 36(5): 615-623 DOI:10.1007/s11595-021-2452-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu M. Design and Study of High Efficient Heat-absorption Ceramic Materials and Receiver for Solar Energy[D], 2013 Wuhan: Wuhan Univ. Technol..

[2]

Belmonte M, Nieto MI, Osendi MI, et al. Influence of the SiC Grain Size on the Wear Behaviour of Al2O3/SiC Composites[J]. J. Eur. Ceram. Soc., 2006, 26(7): 1273-1279.

[3]

Xu X, Song J, Wu J, et al. Preparation and Thermal Shock Resistance of Mullite and Corundum Co-bonded SiC Ceramics for Solar Thermal Storage[J]. J. Wuhan. Univ. Technol., 2020, 35(1): 16-25.

[4]

Niihara K. New Design Concept of Structural Ceramics: Ceramic Nanocomposites[J]. J. Ceram. Soc. Jpn., 1991, 99(3): 974-982.

[5]

Ortiz-Merino JL, Todd RI. Relationship between Wear Rate, Surface Pullout and Microstructure during Abrasive Wear of Alumina and Alumina/SiC Nanocomposites[J]. Acta Mater., 2005, 53(12): 3345-3357.

[6]

Limpichaipanit A, Todd RI. The Relationship between Microstructure, Fracture and Abrasive Wear in Al2O3/SiC Nanocomposites and Microcomposites Containing 5% and 10% SiC[J]. J. Eur. Ceram. Soc., 2009, 29(13): 2841-2848.

[7]

Ai HJ, Xiu ZM, Qin XM, et al. Fabrication and Mechanical Properties of Al2O3/SiC Ceramic Nanocomposites[J]. J. Northeast. Univ., 2002, 23(5): 451-454.

[8]

Wang HZ, Gao L, Guo JK. The Effect of Nanoscale SiC Particles on the Microstructure of Al2O3 Ceramics[J]. Ceram. Int., 2000, 26(4): 391-396.

[9]

Shi XL, Xu FM, Zhang ZJ, et al. Mechanical Properties of Hot-pressed Al2O3/SiC Composites[J]. Mater. Sci. Eng. A., 2010, 527(18–19): 4646-4649.

[10]

Parchovianský M, Galusek D, Sedláček J, et al. Microstructure and Mechanical Properties of Hot Pressed Al2O3/SiC Nanocomposites[J]. J. Eur. Ceram. Soc., 2013, 33(12): 2291-2298.

[11]

Sternitzke M. Structural Ceramic Nanocomposites[J]. J. Eur. Ceram. Soc., 1997, 17(9): 1061-1082.

[12]

Mohammad-Rahimi R, Rezaie HR, Nemati A. Sintering of Al2O3-SiC Composite from Sol-gel Method with MgO, TiO2 and Y2O3 Addition[J]. Ceram. Int., 2011, 37(5): 1681-1688.

[13]

Xu X, Lao X, Wu J, et al. Synthesis and Characterization of Al2O3/SiC Composite Ceramics via Carbothermal Reduction of Aluminosilicate Precursor for Solar Sensible Thermal Storage[J]. J. Alloy. Compd., 2016, 662: 126-137.

[14]

Xu X, Zhao F, Wu J, et al. Research on Microstructure and Thermal Shock Behaviour of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power[J]. J. Wuhan. Univ. Technol., 2009, 13: 8-11.

[15]

Xu X, Rao Z, Wu J, et al. In-Situ. J. Chin Ceram. Soc., 2014, 42(7): 869-877.

[16]

Dong YL, Xu FM, Shi XL, et al. Fabrication and Mechanical Properties of Nano-/micro-sized Al2O3/SiC Composites[J]. Mater. Sci. Eng. A, 2009, 504(1–2): 49-54.

[17]

Griffith AA. The Phenomena of Rupture and Flow in Solids Trans[J]. Philos. Trans. R. Soc. Lond. A, 1921, 221(582–593): 163-198.

[18]

Wang Y, Hsu SM. Wear and Wear Transition Mechanisms of Ceramics[J]. Wear, 1996, 195(1–2): 112-122.

[19]

Kingery WD, Bowen HK, Uhlmann DR. Introduction to Ceramics[M], 1976 New Jersy: Wiley.

[20]

Ohji T, Jeong YK, Choa YH, et al. Strengthening and Toughening Mechanisms of Ceramic Nanocomposites[J]. J. Am. Ceram. Soc., 1998, 81(6): 1453-1460.

[21]

Sun XD, Liang Y. Mechanism of Strengthening of Al2O3/SiC Nanocomposites[J]. Acta Metall. Sin., 1999, 8: 879-882.

[22]

Barea R, Belmonte M, Osendi MI, et al. Thermal Conductivity of Al2O3/SiC Platelet Composites[J]. J. Eur. Ceram. Soc., 2003, 23(11): 1773-1778.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/