PDLLA/β-TCP/HA/CHS/NGF Sustained-release Conduits for Peripheral Nerve Regeneration

Xiumei Yan , Jing Wang , Qundi He , Haixing Xu , Junyan Tao , Kelly Koral , Kebi Li , Jingyi Xu , Jing Wen , Zhijun Huang , Peihu Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 600 -606.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 600 -606. DOI: 10.1007/s11595-021-2450-6
Biomaterial

PDLLA/β-TCP/HA/CHS/NGF Sustained-release Conduits for Peripheral Nerve Regeneration

Author information +
History +
PDF

Abstract

Using nerve guide conduits (NGCs) to promote the regeneration of PNI is a feasible alternative to autograft. Compared with NGCs made of single material, composite NGCs have a greater development prospect. Our previous research has confirmed that poly(D, L-lactic acid)/β-tricalcium phosphate/hyaluronic acid/chitosan/nerve growth factor (PDLLA/β-TCP/HA/CHS/NGF) NGCs have excellent physical and chemical properties, which can slowly release NGF and support cell adhesion and proliferation. In this study, PDLLA/β-TCP/HA/CHS/NGF NGCs were prepared and used to bridge a 10 mm sciatic nerve defect in 200–250 g Sprague-Dawley (SD) rat to verify the performance of the NGCs in vivo. Substantial improvements in nerve regeneration were observed after using the PDLLA/β-TCP/HA/CHS/NGF NGCs based on gross post-operation observation, triceps wet weight analysis and nerve histological assessment. In vivo studies illustrate that the PDLLA/β-TCP/HA/CHS/NGF sustained-release NGCs can effectively promote peripheral nerve regeneration, and the effect is similar to that of autograft.

Cite this article

Download citation ▾
Xiumei Yan, Jing Wang, Qundi He, Haixing Xu, Junyan Tao, Kelly Koral, Kebi Li, Jingyi Xu, Jing Wen, Zhijun Huang, Peihu Xu. PDLLA/β-TCP/HA/CHS/NGF Sustained-release Conduits for Peripheral Nerve Regeneration. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(4): 600-606 DOI:10.1007/s11595-021-2450-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LimEMF, NakanishiST, HoghooghiV, et al.. AlphaB-crystallin Regulates Remyelination After Peripheral Nerve Injury[J]. Proc. Natl. Acad. Sci., 2017, 114(9): 1 707-1 716

[2]

VijayavenkataramanS. Nerve Guide Conduits for Peripheral Nerve Injury Repair: A Review on Design, Materials and Fabrication Methods[J]. Acta Biomater., 2020, 106: 54-69

[3]

WibergM, TerenghiGJSTI. Will it be Possible to Produce Peripheral Nerves?[J]. Surg. Technol. Int., 2003, 11: 303-310

[4]

YegiyantsS, DayiciogluD, KardashianG, et al.. Traumatic Peripheral Nerve Injury: A Wartime Review[J]. J. Craniofac. Surg., 2010, 21(4): 998-1 001

[5]

LiR, LiuZ, PanY, et al.. Peripheral Nerve Injuries Treatment: a Systematic Review[J]. Cell Biochem. Biophys., 2014, 68(3): 449-454

[6]

RayWZ, MackinnonSE. Management of Nerve Gaps: Autografts, Allografts, Nerve Transfers, and End-to-side Neurorrhaphy[J]. Exp. Neurol., 2010, 223(1): 77-85

[7]

LinYC, MarraKG. Injectable Systems and Implantable Conduits for Peripheral Nerve Repair[J]. Biomed. Mater., 2012, 7(2): SI

[8]

MooreAM, RayWZ, ChenardKE, et al.. Nerve Allotransplantation as It Pertains to Composite Tissue Transplantation[J]. Hand, 2009, 4(3): 239-244

[9]

Grinsell D, Keating CP. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies[J]. Biomed Res. Int., 2014, 698256

[10]

Muheremu A, Ao Q. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury[J]. Biomed Res. Int., 2015, 237507

[11]

ZhangES, ZhuCS, YangJ, et al.. Electrospun PDLLA/PLGA Composite Membranes for Potential Application in Guided Tissue Regeneration[J]. Mater. Sci. Eng., 2016, 58(Jan.): 278-285

[12]

GuoXL, LiuG, HeQD, et al.. The Study of Nerve Conduit with Biocompatibility and Electrical Stimulation Effect[J]. Journal of Wuhan University of Technol.-Mater. Sci. Ed., 2018, 33(6): 1 530-1 539

[13]

KimK, YuM, ZongXH, et al.. Control of Degradation Rate and Hydrophilicity in Electrospun Non-woven Poly(d,l-lactide) Nanofiber Scaffolds for Biomedical Applications[J]. Biomaterials, 2003, 24(27): 4 977-4 985

[14]

NairLS, LaurencinCT. Biodegradable Polymers as Biomaterials[J]. Prog. Polym. Sci., 2007, 32(8–9): 762-798

[15]

CuiZQ, ZhangYK, ChengYL, et al.. Applications, Microstructure, mechanical, Corrosion Properties and Cytotoxicity of Beta-calcium Polyphosphate Reinforced ZK61 Magnesium Alloy Composite by Spark Plasma Sintering[J]. Mater. Sci. Eng. C: Mater. Biol. Appl., 2019, 99: 1 035-1 047

[16]

GilarskaA, Lewandowska-LancuckaJ, Guzdek-ZajacK, et al.. Bioactive Yet Antimicrobial Structurally Stable Collagen/Chitosan/Lysine Functionalized Hyaluronic Acid-based Injectable Hydrogels for Potential Bone Tissue Engineering Applications[J]. Int. J. Biol. Macromol., 2019, 155: 938-950

[17]

XuX, JhaAK, HarringtonDA, et al.. Hyaluronic Acid-based Hydrogels: From a Natural Polysaccharide to Complex Networks[J]. Soft Matter, 2012, 8(12): 3 280-3 294

[18]

LogithKumarR, KeshavNarayanA, DhivyaS, et al.. A Review of Chitosan and Its Derivatives in Bone Tissue Engineering[J]. Carbohydr. Polym., 2016, 151: 172-188

[19]

ZhangZ, LiX, LiZ, et al.. Collagen/nano-sized β-tricalcium Phosphate Conduits Combined with Collagen Filaments and Nerve Growth Factor Promote Facial Nerve Regeneration in Miniature Swine: An in vivo Study[J]. Oral Surg., Oral Med., Oral Pathol. Oral Radiol., 2019, 128(5): 472-478

[20]

McmahonSB, BennettDLH, PriestleyJV, et al.. The Biological Effects of Endogenous Nerve Growth Factor on Adult Sensory Neurons Re-Vealed by a TrkA-IgG Fusion Molecule[J]. Nat. Med., 1995, 1(8): 774-780

[21]

EggersR, WinterFD, HoyngSA, et al.. Lentiviral Vector-Mediated Gradients of GDNF in the Injured Peripheral Nerve: Effects on Nerve Coil Formation, Schwann Cell Maturation and Myelination[J]. Plos One, 2013, 8(8): e71076

[22]

MoattariM, KouchesfehaniHM, KakaG, et al.. Evaluation of Nerve Growth Factor (NGF) Treated Mesenchymal Stem Cells for Recovery in Neurotmesis Model of Peripheral Nerve Injury[J]. J. Cranio-Maxillo-Facial Surg., 2018, 46(6): 898-904

[23]

GranholmAC, ReylandM, AlbeckD, et al.. Glial Cell Line-Derived Neurotrophic Factor Is Essential for Postnatal Survival of Midbrain Dopamine Neurons[J]. J. Neurosci., 2000, 20(9): 3 182-3 190

[24]

TriaMA, FuscoM, VantiniG, et al.. Pharmacokinetics of Nerve Growth Factor (NGF) Following Different Routes of Administration to Adult Rats[J]. Exp. Neurol., 1994, 127(2): 178-183

[25]

KearneyCJ, MooneyDJ. Macroscale Delivery Systems for Molecular and Cellular Payloads[J]. Nat. Mater., 2013, 12(11): 1 004-1 017

[26]

LackingtonWA, RyanAJ, O’BrienFJ. Advances in Nerve Guidance Conduit-Based Therapeutics for Peripheral Nerve Repair[J]. ACS Biomater. Sci. Eng., 2016, 3(7): 1 221-1 235

[27]

LiYP, LiuH, XuHX, et al.. Preparation and Characterization of a Conduit for Peripheral Nerve Regeneration[J]. Cur. Appl. Polym. Sci., 2017, 1(1): 35-44

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/