Improvement of Ge MOS Electrical and Interfacial Characteristics by using NdAlON as Interfacial Passivation Layer

Chunxia Li , Weifeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 533 -537.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 533 -537. DOI: 10.1007/s11595-021-2441-7
Advanced Materials

Improvement of Ge MOS Electrical and Interfacial Characteristics by using NdAlON as Interfacial Passivation Layer

Author information +
History +
PDF

Abstract

The Ge metal-oxide-semiconductor (MOS) capacitors were fabricated with HfO2 as gate dielectric. AlON, NdON, and NdAlON were deposited between the gate dielectric and the Ge substrate as the interfacial passivation layer (IPL). The electrical properties (such as capacitance-voltage (C-V) and gate leakage current density versus gate voltage (J g-V g)) were measured by HP4284A precision LCR meter and HP4156A semiconductor parameter analyzer. The chemical states and interfacial quality of the high-k/Ge interface were investigated by X-ray photoelectron spectroscopy (XPS). The experimental results show that the sample with the NdAlON as IPL exhibits the excellent interfacial and electrical properties. These should be attributed to an effective suppression of the Ge suboxide and HfGeOx interlayer, and an enhanced blocking role against interdiffusion of the elements during annealing by the NdAlON IPL.

Keywords

Ge MOS capacitor / interfacial passivation layer (IPL) / gate stacked dielectric / interface properties

Cite this article

Download citation ▾
Chunxia Li, Weifeng Zhang. Improvement of Ge MOS Electrical and Interfacial Characteristics by using NdAlON as Interfacial Passivation Layer. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(4): 533-537 DOI:10.1007/s11595-021-2441-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lim CM, Zhao ZQ, Sumita K, et al. Operation of (111) Ge-on-Insula-tor n-channel MOSFET Fabricated by Smart-Cut Technology[J]. IEEE Electron Dev. Lett., 2020, 41(8): 1 266-1 266.

[2]

Lee TI, Ahn HJ, Kim MJ, et al. Ultrathin EOT (0.67 nm) High-k Dielectric on Ge MOSFET Using Y Doped ZrO2 With Record-Low Leakage Current[J]. IEEE Electron Dev. Lett., 2019, 40(4): 502-505.

[3]

Xie Q, Deng S, Schaekers M. Germanium Surface Passivation and Atomic Layer Deposition of High-k dielectrics-a Tutorial Review on Ge-based MOS Capacitors[J]. Semicond. Sci. Tech., 2012, 27: 074012-1–074012-18.

[4]

Cheng ZX, Xu JP, Liu L, et al. Effective Passivation of HfO2/Ge Interface by using Nitrided Germanate as Passivation Interlayer[J]. Phys. Status Solidi A, 2017, 214: 16009741-1–16009741-6.

[5]

Li CX, Leung CH, Lai PT, et al. Effects of Fluorine Incorporation on the Properties of Ge p-MOS Capacitors with HfTiON Dielectric[J]. Solid-State Electron., 2010, 54: 675-679.

[6]

Bai WP, Lu N, Kwong DL. Si Interlayer Passivation on Germanium MOS Capacitors With High-k Dielectric and Metal Gate[J]. IEEE Electron Dev. Lett., 2005, 26: 378-380.

[7]

Li XF, Cao YQ, Li AD. HfO2/Al2O3/Ge Gate Stacks with Small Capacitance Equivalent Thickness and Low Interface State Density[J]. ECS Solid State Lett., 2012, 1: N10-N12.

[8]

Sugawara T, Oshima Y, Sreenivasan R, et al. Electrical Properties of Germanium/Metal-oxide Gate Stacks with Atomic Layer Deposition Grown Hafnium-dioxide and Plasma-synthesized Interface Layers[J]. Appl. Phys. Lett., 2007, 90: 112912-1–112912-3.

[9]

Xu HX, Xu JP, Li CX, et al. Electrical Properties of Ge Metal-oxide-semiconductor Capacitors with La2O3 Gate Dielectric Annealed in Different Ambient[J]. Thin Solid Films, 2010, 518: 6 962-6 965.

[10]

Li CX, Lai PT. Wide-bandgap High-k Y2O3 as Passivating Interlayer for Enhancing the Electrical Properties and High-field Reliability of n-Ge Metal-oxide-semiconductor Capacitors with High-k HfTiO Gate Dielectric[J]. Appl. Phys. Lett., 2009, 95: 022910-1–022910-3.

[11]

Liu LN, Choi HW, Xu JP, et al. GaAs Metal-Oxide-Semiconductor Capacitor With Nd-Based High-k Oxynitrides as Gate Dielectric and Passivation Layer[J]. IEEE Electron Dev. Lett., 2018, 65: 72-78.

[12]

Gan S, Li L, Nguyen T, et al. Scanning Tunneling Microscopy of Chemically Cleaned Germanium (100) Surfaces[J]. Surf. Sci., 1998, 395: 69-74.

[13]

Li XF, Liu XJ, Cao YQ, et al. Improved Interfacial and Electrical Properties of Atomic Layer Deposition HfO2 Films on Ge with La2O3 Passivation[J]. Appl. Surf. Sci., 2013, 264: 783-786.

[14]

Mitrovic IZ, Althobaiti M, Weerakkody AD, et al. Ge Interface Engineering Using Ultra-thin La2O3 and Y2O3 Films: A Study into the Effect of Deposition Temperature[J]. J. Appl. Phys., 2014, 115: 114102-1–114102-16.

[15]

Dimoulas A, Tsoutsou D, Panayiotatos Y, et al. The Role of La Surface Chemistry in the Passivation of Ge[J]. Appl. Phys. Lett., 2010, 96: 012902-1–012902-3.

[16]

Pan TM, Hou SJ, Wang CH. Effects of Nitrogen Content on the Structure and Electrical Properties of High-k NdOxNy Gate Dielectrics[J]. J. Appl. Phys., 2008, 103: 124105-1–124105-8.

[17]

Fissel A, Elassar Z, Kirfel O, et al. Interface Formation during Molecular Beam Epitaxial Growth of Neodymium Oxide on Silicon[J]. J. Appl. Phys., 2006, 99: 074105-1–074105-6.

[18]

Sunding MF, Hadidi K, Diplas S, et al. XPS Characterisation of in Situ Treated Lanthanum Oxide and Hydroxide Using Tailored Charge Referencing and Peak Fitting Procedures[J]. J. Electron Spectrosc. Rel. Phenomena, 2011, 184: 399-409.

[19]

Barbora L, Singh R, Shroti N, et al. Synthesis and Characterization of Neodymium Oxide Modified Nafion Membrane for Direct Alcohol Fuel Cells[J]. Materials Chemistry and Physics, 2010, 122: 211-216.

[20]

Terman LM. An Investigation of Surface States at a Silicon/Silicon Oxide Interface Employing Metal-oxide-silicon Diodes[J]. Solid-State Electron., 1962, 5(5): 285-299.

[21]

Elshocht SV, Caymax M, Conard T, et al. Effect of Hafnium Germanate Formation on the Interface of HfO2/Germanium Metal Oxide Semiconductor Devices[J]. Appl. Phys. Lett., 2006, 88: 141904-1–141904-3.

[22]

Houssa M, Tuominen M, Naili M, et al. Trap-assisted Tunneling in High Permittivity Gate Dielectric Stacks[J]. J. Appl. Phys., 2000, 87: 8 615-8 620.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/