Effect of C/Mo Duplex-coating on Thermal Residual Stresses in SiCf/Ti2AlNb Composites

Tangkui Zhu , Degui Wang , Xian Luo

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 526 -532.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 526 -532. DOI: 10.1007/s11595-021-2440-8
Advanced Materials

Effect of C/Mo Duplex-coating on Thermal Residual Stresses in SiCf/Ti2AlNb Composites

Author information +
History +
PDF

Abstract

Three-dimensional finite element physical models considering the layered distribution of materials at the interface were developed to study the effect of the coating system on distributions of thermal residual stresses in SiCf/Ti2AlNb composites. Two coating systems were comparatively studied, namely C coating and C/Mo duplex-coating. The thermal residual stresses after 1 080 °C/1 h solution treatment and 800 °C/20 h ageing treatment in the composites were also analyzed. The experimental results show that Mo coating can decrease thermal residual stress magnitude in the matrix. However, it would increase the thermal residual stresses in the interfacial reaction layer of TiC. The change of radial thermal residual stress in TiC layer is inconspicuous after solid solution and ageing treatment, but the hoop and axial thermal residual stresses increase obviously. However, the heat treatment can obviously reduce hoop and axial thermal residual stresses of the matrix, which is benefit to restrain the initiation and propagation of cracks in the matrix.

Keywords

finite element simulation / titanium matrix composite / SiC fiber / thermal residual stress

Cite this article

Download citation ▾
Tangkui Zhu, Degui Wang, Xian Luo. Effect of C/Mo Duplex-coating on Thermal Residual Stresses in SiCf/Ti2AlNb Composites. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(4): 526-532 DOI:10.1007/s11595-021-2440-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hooker JA, Doorbar PJ. Metal Matrix Composites for Aeroengines[J]. Materials Science and Technology, 2000, 16(7–8): 725-731.

[2]

Leyens C, Kocian F, Hausmann J, et al. Materials and Design Concepts for High Performance Compressor Components[J]. Aerospace Science and Technology, 2003, 7(3): 201-210.

[3]

Arsenault RJ, Taya M. Thermal Residual Stress in Metal Matrix Composite[J]. Acta Metallurgica, 1987, 35(3): 651-659.

[4]

Jensen HM. Residual Stress Effects on the Compressive Strength of Uni-directional Fibre Composites[J]. Acta Materialia, 2002, 50(11): 2 895-2 904.

[5]

Brunet A, Valle R, Vassel A. Intermetallic TiAl-based Matrix Composites: Investigation of the Chemical and Mechanical Compatibility of a Protective Coating Adapted to an Alumina Fibre[J]. Acta Materialia, 2000, 48(20): 4 763-4 774.

[6]

Luo X, Yang Y, Yu Y, et al. Effect of Mo Coating on the Interface and Mechanical Properties of SiC Fiber Reinforced Ti6Al4V Composites[J]. Materials Science and Engineering A, 2012, 550: 286-292.

[7]

Wang X, Yang Y, Luo X, et al. Effect of C/Mo Duplex Coating on the Interface and Mechanical Properties of SiCf/Ti6Al4V Composites[J]. Materials Science and Engineering: A, 2013, 566: 47-53.

[8]

Yang YQ, Dudek HJ, Kumpfert J, et al. Microstructure of Interfacial Region of SCS-6 SiC/TiB2/Ti2AlNb Composite[J]. Scripta Materialia, 2001, 44(11): 2531-2536.

[9]

Luo X, Ji X, Yang YQ, et al. Fatigue Behaviors of C/Mo Double-coated SiC Fiber-reinforced Ti6Al4V Composites with Varied Interfacial Microstructure[J]. Composites Interfaces, 2015, 22(7): 689-701.

[10]

Shaw LL, Miracle DB. Effects of an Interfacial Region on the Transverse Behavior of Metal-matrix Composites-A Finite Element Analysis[J]. Acta Materialia, 1996, 44(5): 2 043-2 055.

[11]

Haque S, Choy KL. Finite Element Modelling of the Effect of a Functionally Graded Protective Coating for SiC Monofilaments on Ti-based Composite Behaviour[J]. Materials Science and Engineering A, 2000, 291(1–2): 97-109.

[12]

Xia ZH, Peters PWM, Dudek HJ. Finite Element Modelling of Fatigue Crack Initiation in SiC-fibre Reinforced Titanium Alloys[J]. Composites Part A, 2000, 31(10): 1 031-1 037.

[13]

Lou J, Yang Y, Luo X, et al. Effects of Fiber Volume Fraction on Transverse Tensile Properties of SiC/Ti-6Al-4V Composites[J]. Rare Metal Materials and Engineering, 2011, 40(4): 575-579.

[14]

Huang B, Yang Y, Luo H, et al. Effect of the Interfacial Reaction Layer Thickness on the Thermal Residual Stresses in SiCf/Ti-6Al-4V Composites[J]. Materials Science and Engineering A, 2008, 489(1): 178-186.

[15]

Huang B, Yang Y. Analysis Methods and the Effect of Thermal Residual Stresses on the Structure and Mechanical Properties of Metal Matrix Composites[J]. Materials Reports, 2006, 20(5): 413-415. 419

[16]

Ma Z, Yang Y, Zhu Y, Chen Y. Progress in Thermal Residual Stresses of Continuous Fiber Reinforced Titanium Matrix Composites[J]. Rare Metal Materials and Engineering, 2004, 33(12): 1 248-1 251.

[17]

Li Y, Zhao Y, Wu A, et al. Numerical Simulation for Full-penetration Electron Beam Welding of Ti2AlNb Alloy[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1 341-1 345.

[18]

Luo X, Xu JJ, Wang YQ, et al. Effect of Solution and Aging Treatment on the Microstructure and Tensile Properties of SiCf/C/Mo/Ti2AlNb Composites[J]. Intermetallics, 2018, 95: 33-39.

[19]

Luo X, Wang YQ, Yang YQ, et al. Effect of C/Mo Duplex Coating on the Interface and Tensile Strength of SiCf/Ti-22Al-29Nb Composites[J]. Journal of Alloys and Compounds, 2017, 721: 653-660.

[20]

Kestner-Weykamp HT, Ward CH, Broderick TF, et al. Microstructures and Phase Relationships in the Ti3Al + Nb System[J]. Scripta Metallurgica, 1989, 23(10): 1 697-1 702.

[21]

Boehlert CJ, Majumdar BS, Krishnamurthy S, et al. Role of Matrix Microstructure on Room-temperature Tensile Properties and Fiber-strength Utilization of an Orthorhombic Ti-alloy-based Composite[J]. Metallurgical and Materials Transactions A, 1997, 28(2): 309-323.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/