Thermoelectric Properties of n-type Full-Heusler Fe2−2xCo2xTiSn Prepared by an Ultra-fast Synthesis Process

Dongyan Zhao , Yanning Chen , Yubo Wang , Haifeng Zhang , Zhen Fu , Shuaipeng Wang , Wen Yu , Jian Du , Wenhe Wang , Junhao Qiu , Yonggao Yan

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 497 -504.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (4) : 497 -504. DOI: 10.1007/s11595-021-2436-4
Advanced Materials

Thermoelectric Properties of n-type Full-Heusler Fe2−2xCo2xTiSn Prepared by an Ultra-fast Synthesis Process

Author information +
History +
PDF

Abstract

Full-Heusler alloy Fe2TiSn was predicted to be a potential thermoelectric material with high mechanical properties and stability. Fe2TiSn was usually prepared by arc-melting followed by annealing for 2 weeks, which takes a long time and consumes a large amount of energy. In this paper, Fe2TiSn was prepared by an ultra-fast method, self-propagating high-temperature synthesis (SHS) combined with spark plasma sintering. The bulk materials with uniform element distribution, well controlled composition and relative densities of over 97.5% were prepared. The undoped Fe2TiSn samples show p-type transport behavior. Co was heavily doped at the Fe site to prepare n-type Fe2−2xCo2xTiSn samples. The thermoelectric properties measurements carried out on the Co-doped samples show a highest ZT = 0.02 at 300 K, which is about tripe the performance of the pristine Fe2TiSn. This study provides a new approach for the rapid and low-cost preparation of full-Heusler thermoelectric materials.

Keywords

thermoelectric / full-Heusler / Fe2TiSn / SHS / thermoelectric properties

Cite this article

Download citation ▾
Dongyan Zhao, Yanning Chen, Yubo Wang, Haifeng Zhang, Zhen Fu, Shuaipeng Wang, Wen Yu, Jian Du, Wenhe Wang, Junhao Qiu, Yonggao Yan. Thermoelectric Properties of n-type Full-Heusler Fe2−2xCo2xTiSn Prepared by an Ultra-fast Synthesis Process. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(4): 497-504 DOI:10.1007/s11595-021-2436-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goldsmid HJ. Introduction to Thermoelectricity[M], 2016 Berlin: Springer. 3-5.

[2]

Sootsman JR, Chung DY, Kanatzidis MG. New and old Concepts in Thermoelectric Materials[J]. Angew. Chem. Int. Ed., 2009, 48(46): 8 616-8 639.

[3]

Matsuura H, Nishino Y, Mizutani U, Asano S. Doping Effects on Thermoelectric Properties of the Pseudo Gap Fe2VAl System[J]. J. Jpn. Inst. Met., 2002, 66: 767-771.

[4]

Mikami M, Kobayashi K, Kawada T, Kubo K, Uchiyama N. Development of a Thermoelectric Module Using the Heusler Alloy Fe2Val[J]. J. Electron. Mater., 2009, 38: 1 121-1 126.

[5]

Lue CS. Thermoelectric Properties of the Semi Metallic Heusler Compounds Fe2−xV1+xM (M = Al, Ga)[J]. Phys. Rev. B, 2002, 66: 085 121.

[6]

Nishino Y, Deguchi S, Mizutani U. Thermal and Transport Properties of the Heusler-type Fe2VAl1−xGex (0 ⩽ x ⩽ 0.20) Alloys: Effect of Doping on Lattice Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient[J]. Phys. Rev. B, 2006, 74: 115 115.

[7]

Lue CS, Chen CF, Lin JY, Yu YT, Kuo YK. Thermoelectric Properties of Quaternary Heusler Alloys Fe2VAl1−xSix[J]. Phys. Rev. B, 2007, 75: 064 204.

[8]

Mikami M, Kinemuchi Y, Ozaki K, Terazawa Y, Takeuchi T. Thermoelectric Properties of Tungsten-substituted Heusler Fe2VAl Alloy[J]. J. Appl. Phys., 2012, 111: 093 710.

[9]

Knapp I, Budinska B, Milosavljevic D, Heinrich P, Khmelevskyi S, Moser R, Podloucky R, Prenninger P, Bauer E. Impurity Band Effects on Transport and Thermoelectric Properties of Fe2−xNixVal[J]. Phys. Rev. B, 2017, 96: 045 204.

[10]

Yabuuchi S, Okamoto M, Nishide A, Kurosaki Y, Hayakawa J. Large Seebeck Coefficients of Fe2TiSn and Fe2TiSi: First-Principles Study[J]. Appl. Phys. Express, 2013, 6: 025 504.

[11]

Zou T, Jia T, Xie W, Zhang Y, Widenmeyer M, Xiao X, Weidenkaff A. Band Structure Modification of the Thermoelectric Heusler-phase TiFe2Sn via Mn Substitution[J]. Phys. Chem. Chem. Phys., 2017, 19: 18 273-18 278.

[12]

Lue CS, Kuo YK. Thermal and Transport Properties of the Heusler-type Compounds Fe2−xTi1+xSn[J]. J. Appl. Phys., 2004, 96: 2681.

[13]

Ślebarski A, Deniszczyk J, Borgieł W, Jezierski A, Swatek M, Winiarska A, Maple MB, Yuhasz WM. Electronic Structure and Thermodynamic Properties of the Heusler Alloys Fe2Ti1−xVxSn[J]. Phys. Rev. B, 2004, 69: 155 118.

[14]

Buffon MLC, Laurita G, Lamontagne L, Levin EE, Mooraj S, Lloyd DL, White N, Pollock TM, Seshadri R. Thermoelectric Performance and The Role of Anti-site Disorder in the 24-electron Heusler TiFe2Sn[J]. J. Phys. Condens. Matter., 2017, 29: 405 702.

[15]

Pallecchi I, Pani M, Ricci F, Lemal S, Bilc DI, Ghosez P, Bernini C, Ardoino N, Lamura G, Marré D. Thermoelectric Properties of Chemically Substituted Full-Heusler Fe2TiSn1−xSbx (x = 0, 0.1, and 0.2) Compounds[J]. Phys. Rev. Mater., 2018, 2: 075 403.

[16]

Merzhanov A. History and Recent Developments in SHS[J]. Ceram. Int., 1995, 21(5): 371-379.

[17]

Subrahmanyam J, Vijayakumar M. Self-propagating High Temperature Synthesis[J]. J. Mater. Sci., 1992, 27(23): 6 249-6 273.

[18]

Merzhanov AG. Self-propagating High-temperature Synthesis: Twenty Years of Search and Findings[J]. Combustion and Plasma Synthesis of High-temperature Materials, 1990, 4: 1-53.

[19]

Merzhanov A, Borovinskaya I. A New Class of Combustion Processes[J]. Combust. Sci. Technol., 1975, 10(5–6): 195-201.

[20]

Su X, Fu F, Yan Y, Zheng G, Liang T, Zhang Q, Cheng X, Yang D, Chi H, Tang X, Zhang Q, Uher C. Self-propagating High-temperature Synthesis for Compound Thermoelectrics and New Criterion for Combustion Processing[J]. Nat. Commun., 2014, DOI: https://doi.org/10.1038/ncomms5908

[21]

Zheng G, Su X, Liang T, Lu Q, Yan Y, Uher C, Tang X. High Thermoelectric Performance of Mechanically Robust n-type Bi2Te3−xSex Prepared by Combustion Synthesis[J]. J. Mater. Chem. A, 2015, 3(12): 6 603-6 613.

[22]

Liang T, Su X, Yan Y, Zheng G, Zhang Q, Chi H, Tang X, Uher C. Ultra-fast Synthesis and Thermoelectric Properties of Te Doped Skutterudites[J]. J. Mater. Chem. A, 2014, 2(42): 17 914-17 918.

[23]

Yang D, Su X, Yan Y, Hu T, Xie H, He J, Uher C, Kanatzidis MG, Tang X. Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi1−xPbxCuSeO[J]. Chem. Mater., 2016, 28(3): 4 628-4 640.

[24]

Liang T, Su X, Tan X, Zheng G, She X, Yan Y, Tang X, Uher C. Ultra-fast Non-equilibrium Synthesis and Phase Segregation in InxSn1−xTe Thermoelectrics by SHS-PAS Processing[J]. J. Mater. Chem. C, 2015, 3(33): 8 550-8 558.

[25]

Rogachev AS, Shkiro VM, Chausskaya ID, Shvetsov MV. Gasless Combustion in the System Titanium-carbon-nickel[J]. Combust. Explos. Shock Waves, 1988, 24(6): 720-726.

[26]

Malinda L B, Geneva L, Leo L. Thermoelectric Performance and the Role of Anti-site Disorder in the 24-electron Heusler TiFe2Sn[J]. J. Phys. Condens. Matter, 2017, 29: 405 702.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/